#include #include #include #include #include "flash_mla.h" #include "static_switch.h" #define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA") #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") std::vector get_mla_metadata( at::Tensor &seqlens_k, const int64_t num_heads_per_head_k, const int64_t num_heads_k ) { // This should match the logic in the MLA kernel. static constexpr int block_size_m = 64; static constexpr int block_size_n = 64; static constexpr int fixed_overhead_num_blocks = 5; CHECK_DEVICE(seqlens_k); TORCH_CHECK(seqlens_k.is_contiguous()); TORCH_CHECK(seqlens_k.dtype() == torch::kInt32); int batch_size = seqlens_k.size(0); int *seqlens_k_ptr = seqlens_k.data_ptr(); auto options = seqlens_k.options(); auto dprops = at::cuda::getCurrentDeviceProperties(); int sm_count = dprops->multiProcessorCount; int num_sm_parts = sm_count / num_heads_k / cutlass::ceil_div(num_heads_per_head_k, block_size_m); auto tile_scheduler_metadata = torch::empty({num_sm_parts, TileSchedulerMetaDataSize}, options); auto num_splits = torch::empty({batch_size + 1}, options); int *tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr(); int *num_splits_ptr = num_splits.data_ptr(); at::cuda::CUDAGuard device_guard{(char)seqlens_k.get_device()}; auto stream = at::cuda::getCurrentCUDAStream().stream(); Mla_metadata_params params = {}; params.seqlens_k_ptr = seqlens_k_ptr; params.tile_scheduler_metadata_ptr = tile_scheduler_metadata_ptr; params.num_splits_ptr = num_splits_ptr; params.batch_size = batch_size; params.block_size_n = block_size_n; params.fixed_overhead_num_blocks = fixed_overhead_num_blocks; params.num_sm_parts = num_sm_parts; get_mla_metadata_func(params, stream); return {tile_scheduler_metadata, num_splits}; } // note doubles and longs are used in place of floats and ints // https://github.com/pytorch/pytorch/blob/338ed67a1e7aa98dd849f297533c5a71bea4b661/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h#L211 std::vector mha_fwd_kvcache_mla( at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &kcache, // num_blocks x page_block_size x num_heads_k x head_size const c10::optional &vcache_, // num_blocks x page_block_size x num_heads_k x head_size_v const int64_t head_size_v, const at::Tensor &seqlens_k, // batch_size const at::Tensor &block_table, // batch_size x max_num_blocks_per_seq const double softmax_scale, bool is_causal, const at::Tensor &tile_scheduler_metadata, // num_sm_parts x TileSchedulerMetaDataSize const at::Tensor &num_splits // batch_size + 1 ) { auto dprops = at::cuda::getCurrentDeviceProperties(); bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90); at::Tensor vcache = vcache_.has_value() ? vcache_.value() : kcache; auto q_dtype = q.dtype(); TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); CHECK_DEVICE(block_table); TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32"); TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; const int seqlen_q_ori = sizes[1]; const int num_heads_ori = sizes[2]; const int head_size = sizes[3]; TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size_v % 32 == 0, "head_size_v should be a multiple of 32"); const int max_num_blocks_per_seq = block_table.size(1); const int num_blocks = kcache.size(0); const int page_block_size = kcache.size(1); const int num_heads_k = kcache.size(2); TORCH_CHECK(batch_size > 0, "batch size must be postive"); TORCH_CHECK(num_heads_ori % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (seqlen_q_ori == 1) { is_causal = false; } const int ngroups = num_heads_ori / num_heads_k; const int seqlen_q = seqlen_q_ori * ngroups; const int num_heads = num_heads_k; q = q.view({batch_size, seqlen_q_ori, num_heads_k, ngroups, head_size}).transpose(2, 3) .reshape({batch_size, seqlen_q, num_heads, head_size}); int head_size_k = head_size; CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_k); // TODO: fix for optional // if (vcache_.has_value()) { CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_v); } CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_v); CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq); TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32"); CHECK_DEVICE(seqlens_k); CHECK_CONTIGUOUS(seqlens_k); CHECK_SHAPE(seqlens_k, batch_size); at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); at::Tensor out = torch::empty({batch_size, seqlen_q, num_heads, head_size_v}, opts); at::Tensor softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); Flash_fwd_mla_params params = {}; // Set the sizes. params.b = batch_size; params.seqlen_q = seqlen_q; params.cu_seqlens_k = seqlens_k.data_ptr(); params.h = num_heads; params.h_h_k_ratio = num_heads / num_heads_k; params.ngroups = ngroups; params.is_causal = is_causal; params.d = head_size; params.d_v = head_size_v; params.scale_softmax = softmax_scale; params.scale_softmax_log2 = float(softmax_scale * M_LOG2E); // Set the pointers and strides. params.q_ptr = q.data_ptr(); params.k_ptr = kcache.data_ptr(); params.v_ptr = vcache.data_ptr(); params.o_ptr = out.data_ptr(); params.softmax_lse_ptr = softmax_lse.data_ptr(); // All stride are in elements, not bytes. params.q_batch_stride = q.stride(0); params.k_batch_stride = kcache.stride(0); params.v_batch_stride = vcache.stride(0); params.o_batch_stride = out.stride(0); params.q_row_stride = q.stride(-3); params.k_row_stride = kcache.stride(-3); params.v_row_stride = vcache.stride(-3); params.o_row_stride = out.stride(-3); params.q_head_stride = q.stride(-2); params.k_head_stride = kcache.stride(-2); params.v_head_stride = vcache.stride(-2); params.o_head_stride = out.stride(-2); params.block_table = block_table.data_ptr(); params.block_table_batch_stride = block_table.stride(0); params.page_block_size = page_block_size; TORCH_CHECK(tile_scheduler_metadata.dtype() == torch::kInt32, "tile_scheduler_metadata must have dtype int32"); TORCH_CHECK(tile_scheduler_metadata.size(1) == TileSchedulerMetaDataSize); CHECK_DEVICE(tile_scheduler_metadata); CHECK_CONTIGUOUS(tile_scheduler_metadata); params.tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr(); params.num_sm_parts = tile_scheduler_metadata.size(0); TORCH_CHECK(num_splits.dtype() == torch::kInt32, "num_splits must have dtype int32"); CHECK_DEVICE(num_splits); CHECK_CONTIGUOUS(num_splits); params.num_splits_ptr = num_splits.data_ptr(); at::Tensor softmax_lse_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor out_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q, head_size_v}, opts.dtype(at::kFloat)); params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr(); params.oaccum_ptr = out_accum.data_ptr(); auto stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(head_size == 576); if (q_dtype == torch::kBFloat16) { run_mha_fwd_splitkv_mla(params, stream); } #ifndef FLASH_MLA_DISABLE_FP16 else if (q_dtype == torch::kHalf) { run_mha_fwd_splitkv_mla(params, stream); } #endif else { TORCH_CHECK(false, "Unsupported tensor dtype for query"); } out = out.view({batch_size, seqlen_q_ori, ngroups, num_heads_k, head_size_v}).transpose(2, 3) .reshape({batch_size, seqlen_q_ori, num_heads_ori, head_size_v}); softmax_lse = softmax_lse.view({batch_size, num_heads_k, seqlen_q_ori, ngroups}).transpose(2, 3) .reshape({batch_size, num_heads_ori, seqlen_q_ori}); return {out, softmax_lse}; }