### Model Overview A RoBERTa encoder network. This network implements a bi-directional Transformer-based encoder as described in ["RoBERTa: A Robustly Optimized BERT Pretraining Approach"](https://arxiv.org/abs/1907.11692). It includes the embedding lookups and transformer layers, but does not include the masked language model head used during pretraining. The default constructor gives a fully customizable, randomly initialized RoBERTa encoder with any number of layers, heads, and embedding dimensions. To load preset architectures and weights, use the `from_preset()` constructor. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/facebookresearch/fairseq). __Arguments__ - __vocabulary_size__: int. The size of the token vocabulary. - __num_layers__: int. The number of transformer layers. - __num_heads__: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. - __hidden_dim__: int. The size of the transformer encoding layer. - __intermediate_dim__: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. - __dropout__: float. Dropout probability for the Transformer encoder. - __max_sequence_length__: int. The maximum sequence length this encoder can consume. The sequence length of the input must be less than `max_sequence_length` default value. This determines the variable shape for positional embeddings. ### Example Usage ```python import keras import keras_nlp import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_nlp.models.RobertaClassifier.from_preset( "${VARIATION_SLUG}", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_nlp.models.RobertaClassifier.from_preset( "${VARIATION_SLUG}", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` ## Example Usage with HuggingFace uri ```python import keras import keras_nlp import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_nlp.models.RobertaClassifier.from_preset( "${VARIATION_SLUG}", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_nlp.models.RobertaClassifier.from_preset( "${VARIATION_SLUG}", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ```