--- library_name: keras-hub license: apache-2.0 language: - en tags: - text-classification pipeline_tag: text-classification --- ### Model Overview BERT (Bidirectional Encoder Representations from Transformers) is a set of language models published by Google. They are intended for classification and embedding of text, not for text-generation. See the model card below for benchmarks, data sources, and intended use cases. Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). ## Links * [Bert Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/bert-quickstart) * [Bert API Documentation](https://keras.io/api/keras_hub/models/bert/) * [Bert Model Card](https://github.com/google-research/bert/blob/master/README.md) * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) ## Installation Keras and KerasHub can be installed with: ``` pip install -U -q keras-hub pip install -U -q keras>=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |------------------------|------------|-------------------------------------------------------------------------------------------------| | `bert_tiny_en_uncased` | 4.39M | 2-layer BERT model where all input is lowercased. | | `bert_small_en_uncased` | 28.76M | 4-layer BERT model where all input is lowercased. | | `bert_medium_en_uncased` | 41.37M | 8-layer BERT model where all input is lowercased. | | `bert_base_en_uncased` | 109.48M | 12-layer BERT model where all input is lowercased. | | `bert_base_en` | 108.31M | 12-layer BERT model where case is maintained. | | `bert_base_zh` | 102.27M | 12-layer BERT model. Trained on Chinese Wikipedia. | | `bert_base_multi` | 177.85M | 12-layer BERT model where case is maintained. | | `bert_large_en_uncased` | 335.14M | 24-layer BERT model where all input is lowercased. | | `bert_large_en` | 333.58M | 24-layer BERT model where case is maintained. | ## Example Usage ```python import keras import keras_hub import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_hub.models.BertClassifier.from_preset( "bert_medium_en_uncased", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_hub.models.BertClassifier.from_preset( "bert_medium_en_uncased", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` ## Example Usage with Hugging Face URI ```python import keras import keras_hub import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_hub.models.BertClassifier.from_preset( "hf://keras/bert_medium_en_uncased", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_hub.models.BertClassifier.from_preset( "hf://keras/bert_medium_en_uncased", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ```