--- license: mit datasets: - kenhktsui/llm-data-quality language: - en library_name: fasttext pipeline_tag: text-classification --- # llm-data-textbook-quality-fasttext-classifer-v2 This classifier is deeply inspired by [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644), where a classifier was developed to predict the educational value of data, and was then used for data filtering. Model is built on fasttext - it can classify more than 2000 examples per second in CPU. This model can classify if a text has high educational value (more explicitly defined then textbook quality). This definition change is a substantial change vs [kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1](https://huggingface.co/kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1). It can be used as a filter for data curation when training a LLM. There are 3 labels instead of 2 labels, as it offers higher granularity of educational value. - High (Top 25% educational value) - Mid (Middle 25-75% educational value) - Low (Bottom 25% educational value) Please note textbook quality is a subset of high quality. A detailed report/ paper will follow when more downstream experiments of this classifier become available. ## Feedback welcomed! Please give a like and leave a comment if you find this model helpful. I am in a continual journey to make LLM data curation better and easier. ## Examples ```python predict_education_value(['''Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.''']) # Output [1.9266871362924576] predict_educational_value(['''"Attention Is All You Need" is a landmark[1][2] 2017 research paper authored by eight scientists working at Google, responsible for expanding 2014 attention mechanisms proposed by Bahdanau et al. into a new deep learning architecture known as the transformer. The paper is considered by some to be a founding document for modern artificial intelligence, as transformers became the main architecture of large language models.[3][4] At the time, the focus of the research was on improving Seq2seq techniques for machine translation, but even in their paper the authors saw the potential for other tasks like question answering and for what is now called multimodal Generative AI.[5]''']) # Output [1.8226698189973831] predict_educational_value(['''A large language model (LLM) is a computational model notable for its ability to achieve general-purpose language generation and other natural language processing tasks such as classification. Based on language models, LLMs acquire these abilities by learning statistical relationships from text documents during a computationally intensive self-supervised and semi-supervised training process.[1] LLMs can be used for text generation, a form of generative AI, by taking an input text and repeatedly predicting the next token or word.[2]''']) # Output [1.7609568238258362] predict_educational_value(['''In Vapnik–Chervonenkis theory, the Vapnik–Chervonenkis (VC) dimension is a measure of the size (capacity, complexity, expressive power, richness, or flexibility) of a class of sets. The notion can be extended to classes of binary functions. It is defined as the cardinality of the largest set of points that the algorithm can shatter, which means the algorithm can always learn a perfect classifier for any labeling of at least one configuration of those data points. It was originally defined by Vladimir Vapnik and Alexey Chervonenkis.[1]''']) # Output [1.589950144290924] predict_educational_value(['''The query vector is compared (via dot product) with each word in the keys. This helps the model discover the most relevant word for the query word. In this case "girl" was determined to be the most relevant word for "that". The result (size 4 in this case) is run through the softmax function, producing a vector of size 4 with probabilities summing to 1. Multiplying this against the value matrix effectively amplifies the signal for the most important words in the sentence and diminishes the signal for less important words.[5] The structure of the input data is captured in the Wq and Wk weights, and the Wv weights express that structure in terms of more meaningful features for the task being trained for. For this reason, the attention head components are called Query (Wq), Key (Wk), and Value (Wv)—a loose and possibly misleading analogy with relational database systems.''']) # Output [1.4657384157180786] predict_educational_value(['''The Arsenal Football Club (commonly known as simply Arsenal) is an English professional football club based in Holloway, North London. Arsenal compete in the Premier League, the top flight of English football. In domestic football, Arsenal has won 13 league titles (including one unbeaten title), a record 14 FA Cups, two League Cups, 17 FA Community Shields, and a Football League Centenary Trophy. In European football, they have one European Cup Winners' Cup and one Inter-Cities Fairs Cup. In terms of trophies won, it is the third-most successful club in English football.[2]''']) # Output [1.1015518307685852] predict_educational_value(['''The 2003–04 season was Arsenal Football Club's 12th season in the Premier League and their 78th consecutive season in the top flight of English football.[3][4] It began on 1 July 2003 and concluded on 30 June 2004, with competitive matches played between August and May. The club ended the Premier League campaign as champions without a single defeat – a record of 26 wins and 12 draws. Arsenal fared less well in the cups, eliminated in the FA Cup and League Cup semi-finals to Manchester United and Middlesbrough respectively, and at the quarter-final stage of the UEFA Champions League to Chelsea.''']) # Output [1.0146622359752655] predict_educational_value(['''As both teams' first-choice kits featured a shade of red, Arsenal wore their yellow away strip, while Barcelona wore their traditional blue and maroon striped kit. Arsenal won the coin toss and Barcelona kicked off.[21] Barcelona almost immediately came under pressure when Thierry Henry shot straight at Barcelona goalkeeper Víctor Valdés, who conceded a corner. From the resulting corner Arsenal had another chance again courtesy of Henry, whose shot was again saved by Valdés. The next attack in the seventh minute resulted in Arsenal goalkeeper Jens Lehmann saving from Ludovic Giuly after he shot from a narrow angle. Four minutes later Barcelona were awarded a free-kick 35 yards from goal; Ronaldinho shot wide of the goal.''']) # Output [0.7897453680634499] ``` From inspection, it can be noted that the model does like scientific knowledge. It is also interested in Arsenal as a football club, however, it does not think a summary of a particular match has good educational value. ## Usage ```python from typing import List import re from huggingface_hub import hf_hub_download import fasttext model = fasttext.load_model(hf_hub_download("kenhktsui/llm-data-textbook-quality-fasttext-classifer-v2", "model.bin")) def replace_newlines(text: str) -> str: return re.sub("\n+", " ", text) score_dict = { '__label__': 0, '__label__Low': 0, '__label__Mid': 1, '__label__High': 2 } def predict_educational_value(text_list): text_list = [replace_newlines(text) for text in text_list] pred = model.predict(text_list, k=-1) score_list = [] for l, s in zip(*pred): score = 0 for _l, _s in zip(l, s): score += score_dict[_l] * _s score_list.append(float(score)) return score_list predict_educational_value(["Hi"]) # Output: [3.0000010156072676e-05] ``` ## Benchmark To make sure this classifier makes sense, it is applied to various datasets. Educational Value = 2 point * P(High) + 1 point * P(Mid) + 0 point * P(Low) |Dataset | Sampling | Average Educational Value | |--------------------------------------|---|-------------------| |[SciPhi/textbooks-are-all-you-need-lite](https://huggingface.co/datasets/SciPhi/textbooks-are-all-you-need-lite) |First 10,000 | 1.846 | |[nampdn-ai/tiny-orca-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-orca-textbooks) |First 10,000 | 1.668 | |[vikp/textbook_quality_programming](https://huggingface.co/datasets/vikp/textbook_quality_programming) |First 10,000| 1.664| |[nampdn-ai/tiny-textbooks](https://huggingface.co/datasets/nampdn-ai/tiny-textbooks) |First 10,000 | 1.581 | |[armanc/scientific_papers pubmed](https://huggingface.co/datasets/armanc/scientific_papers) |First 10,000 | 1.256| |[wikipedia en 20220301](https://huggingface.co/datasets/wikipedia) |First 10,000 | 1.237| |[armanc/scientific_papers arxiv](https://huggingface.co/datasets/armanc/scientific_papers) |First 10,000 | 1.069 | |[BEE-spoke-data/fineweb-100k_en-med](https://huggingface.co/datasets/BEE-spoke-data/fineweb-100k_en-med)| First 10,000 | 1.017| |[JeanKaddour/minipile](https://huggingface.co/datasets/JeanKaddour/minipile)| First 10,000 | 0.994| |[mattymchen/refinedweb-3m](https://huggingface.co/datasets/mattymchen/refinedweb-3m)| First 10,000 | 0.853| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60e50ce5350d181892d5a636/fCWpxWB1yLmJwWhPXsjIw.png) The classifier aligns with the expectation. Textbook category scores the highest, reflecting the effectiveness of this model. Wikipedia scores comparatively lower because it is not textbook after all and it also contains information (result of a match) that has small educational value. Web scores the lowest.