--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bird-call-classification results: [] datasets: - kayalvizhi42/bird_calls --- # bird-call-classification This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [kayalvizhi42/bird_calls](https://huggingface.co/datasets/kayalvizhi42/bird_calls). It achieves the following results on the evaluation set: - Loss: 0.0735 - Accuracy: 0.9799 - Precision: 0.9579 - Recall: 1.0 - F1: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 50 | 0.2127 | 0.9497 | 0.9175 | 0.9780 | 0.9468 | | No log | 2.0 | 100 | 0.1252 | 0.9698 | 0.9474 | 0.9890 | 0.9677 | | No log | 3.0 | 150 | 0.1037 | 0.9749 | 0.9479 | 1.0 | 0.9733 | | No log | 4.0 | 200 | 0.0947 | 0.9698 | 0.9381 | 1.0 | 0.9681 | | No log | 5.0 | 250 | 0.0850 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 6.0 | 300 | 0.0802 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 7.0 | 350 | 0.0789 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 8.0 | 400 | 0.0769 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 9.0 | 450 | 0.0736 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | 0.1077 | 10.0 | 500 | 0.0735 | 0.9799 | 0.9579 | 1.0 | 0.9785 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0