--- base_model: AI-MO/NuminaMath-7B-TIR license: apache-2.0 pipeline_tag: text-generation tags: - alignment-handbook - generated_from_trainer - llama-cpp - gguf-my-repo widget: - example_title: Math problem messages: - role: user content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots? output: text: "### Solution: \n1- For the polynomial \\\\( x^2 + kx + 36 \\\\) to have\ \ two distinct integer roots, let's denote these roots by \\\\( r_1 \\\\) and\ \ \\\\( r_2 \\\\).\n\n\n2- According to Vieta's formulas, the sum of the roots\ \ \\\\( r_1 + r_2 \\\\) is equal to \\\\(-k\\\\), and the product of the roots\ \ \\\\( r_1 \\\\cdot r_2 \\\\) is equal to 36.\n\n\n3- To find the distinct\ \ integer pairs \\\\((r_1, r_2)\\\\) whose product is 36, we need to determine\ \ all pairs of integers \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2\ \ = 36 \\\\) and \\\\( r_1 \\\\neq r_2 \\\\).\n\n\n4- From the equation \\\\\ ( r_1 + r_2 = -k \\\\), for each valid pair \\\\((r_1, r_2)\\\\), we can compute\ \ the corresponding value of \\\\( k \\\\).\n\n\n5- Finally, since we need the\ \ polynomial to have two distinct integer roots, we need to ensure that \\\\\ ( r_1 \\\\) and \\\\( r_2 \\\\) are distinct.\nLet's start by finding all pairs\ \ \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2 = 36 \\\\). We'll then\ \ determine the values of \\\\( k \\\\) and ensure the roots are distinct.\n\ ```python import itertools\n# Find all pairs (r1, r2) such that r1 * r2 = 36\ \ product_36 = 36 factor_pairs = []\nfor i in range(1, product_36 + 1):\n if\ \ product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] != pair[1]:\ \ # Ensure distinct pairs\n factor_pairs.append(pair)\n \n # Calculate\ \ k for each pair and ensure distinct integer roots\n valid_k_values = set()\n\ \ for r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n\ \ valid_k_values.add(k)\n \n print((len(valid_k_values), sorted(valid_k_values)))\n\ \ ```\n \n ```output\n (4, [-37, -20, -15,-13])\n ```\n The distinct integer\ \ values of \\\\( k \\\\) that make the\npolynomial \\\\( x^2 + kx + 36 \\\\\ ) have two distinct integer roots are \\\\(-37, -20, -15, \\\\text{and} -13\\\ \\).\nTherefore, the number of such values of \\\\( k \\\\) is:\n[ \\\\boxed{4}\ \ \\\\]" model-index: - name: NuminaMath-7B-TIR results: [] --- # kawchar85/NuminaMath-7B-TIR-Q6_K-GGUF This model was converted to GGUF format from [`AI-MO/NuminaMath-7B-TIR`](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo kawchar85/NuminaMath-7B-TIR-Q6_K-GGUF --hf-file numinamath-7b-tir-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo kawchar85/NuminaMath-7B-TIR-Q6_K-GGUF --hf-file numinamath-7b-tir-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo kawchar85/NuminaMath-7B-TIR-Q6_K-GGUF --hf-file numinamath-7b-tir-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo kawchar85/NuminaMath-7B-TIR-Q6_K-GGUF --hf-file numinamath-7b-tir-q6_k.gguf -c 2048 ```