--- license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer datasets: - funsd_re metrics: - precision - recall - f1 model-index: - name: checkpoints results: [] --- # checkpoints This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on the funsd_re dataset. It achieves the following results on the evaluation set: - Precision: 0.3264 - Recall: 0.4864 - F1: 0.3907 - Loss: 0.4377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall | |:-------------:|:------:|:----:|:------:|:---------------:|:---------:|:------:| | 0.1604 | 26.32 | 500 | 0 | 0.1513 | 0 | 0 | | 0.1012 | 52.63 | 1000 | 0.0098 | 0.0786 | 0.5 | 0.0049 | | 0.0994 | 78.95 | 1500 | 0.2518 | 0.1847 | 0.3729 | 0.1901 | | 0.0694 | 105.26 | 2000 | 0.3499 | 0.1926 | 0.3667 | 0.3346 | | 0.0771 | 131.58 | 2500 | 0.3856 | 0.3295 | 0.3450 | 0.4370 | | 0.0565 | 157.89 | 3000 | 0.3865 | 0.4137 | 0.3293 | 0.4679 | | 0.0411 | 184.21 | 3500 | 0.3808 | 0.3624 | 0.3252 | 0.4593 | | 0.0463 | 210.53 | 4000 | 0.3832 | 0.5089 | 0.3221 | 0.4728 | | 0.0414 | 236.84 | 4500 | 0.3911 | 0.6137 | 0.3305 | 0.4790 | | 0.036 | 263.16 | 5000 | 0.3910 | 0.4428 | 0.3275 | 0.4852 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1