--- license: cc-by-nc-4.0 base_model: mental/mental-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: mental_roberta_stress results: [] --- # mental_roberta_stress This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4034 - Accuracy: 0.8266 - F1: 0.8278 - Precision: 0.8490 - Recall: 0.8076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6934 | 0.99 | 31 | 0.6885 | 0.5427 | 0.6930 | 0.5302 | 1.0 | | 0.6692 | 1.98 | 62 | 0.6606 | 0.5664 | 0.7042 | 0.5434 | 1.0 | | 0.46 | 2.98 | 93 | 0.4357 | 0.8098 | 0.8116 | 0.8300 | 0.7940 | | 0.3539 | 3.97 | 124 | 0.4034 | 0.8266 | 0.8278 | 0.8490 | 0.8076 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2