--- tags: - generated_from_trainer datasets: - kanishka/babylm2-subset metrics: - accuracy model-index: - name: opt-babylm2-subset-default-1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-subset type: kanishka/babylm2-subset metrics: - name: Accuracy type: accuracy value: 0.534805757971141 --- # opt-babylm2-subset-default-1e-3 This model was trained from scratch on the kanishka/babylm2-subset dataset. It achieves the following results on the evaluation set: - Loss: 2.3689 - Accuracy: 0.5348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.5477 | 1.0 | 14142 | 2.7490 | 0.4855 | | 2.377 | 2.0 | 28284 | 2.5803 | 0.5045 | | 2.2625 | 3.0 | 42426 | 2.4760 | 0.5164 | | 2.1715 | 4.0 | 56568 | 2.4206 | 0.5235 | | 2.0996 | 5.0 | 70710 | 2.3880 | 0.5278 | | 2.0456 | 6.0 | 84852 | 2.3722 | 0.5306 | | 1.9983 | 7.0 | 98994 | 2.3592 | 0.5327 | | 1.9482 | 8.0 | 113136 | 2.3579 | 0.5338 | | 1.9061 | 9.0 | 127278 | 2.3605 | 0.5346 | | 1.8692 | 10.0 | 141420 | 2.3689 | 0.5348 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.19.1