--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-42_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj type: kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj metrics: - name: Accuracy type: accuracy value: 0.47825513461811886 --- # opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-42_1e-3 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj dataset. It achieves the following results on the evaluation set: - Loss: 2.6863 - Accuracy: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 4.1066 | 0.9997 | 2240 | 3.8160 | 0.3611 | | 3.446 | 1.9997 | 4480 | 3.3024 | 0.4093 | | 3.1301 | 2.9997 | 6720 | 3.0883 | 0.4305 | | 2.9677 | 3.9997 | 8960 | 2.9857 | 0.4410 | | 2.8452 | 4.9997 | 11200 | 2.9248 | 0.4470 | | 2.7915 | 5.9997 | 13440 | 2.8839 | 0.4515 | | 2.746 | 6.9997 | 15680 | 2.8591 | 0.4544 | | 2.7113 | 7.9997 | 17920 | 2.8384 | 0.4566 | | 2.6925 | 8.9997 | 20160 | 2.8258 | 0.4583 | | 2.6723 | 9.9997 | 22400 | 2.8152 | 0.4594 | | 2.657 | 10.9997 | 24640 | 2.8094 | 0.4603 | | 2.6394 | 11.9997 | 26880 | 2.7989 | 0.4615 | | 2.6428 | 12.9997 | 29120 | 2.7990 | 0.4618 | | 2.636 | 13.9997 | 31360 | 2.7911 | 0.4622 | | 2.6195 | 14.9997 | 33600 | 2.7706 | 0.4649 | | 2.5716 | 15.9997 | 35840 | 2.7441 | 0.4685 | | 2.5238 | 16.9997 | 38080 | 2.7221 | 0.4713 | | 2.4675 | 17.9997 | 40320 | 2.7048 | 0.4741 | | 2.4042 | 18.9997 | 42560 | 2.6900 | 0.4769 | | 2.3318 | 19.9997 | 44800 | 2.6863 | 0.4783 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0