kampkelly commited on
Commit
8ba089c
1 Parent(s): 0064951

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -10
README.md CHANGED
@@ -4,6 +4,14 @@ tags:
4
  - text-generation
5
  - text-generation-inference
6
  - Inference Endpoints
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  # Model Card for Model ID
@@ -17,32 +25,63 @@ tags:
17
  ### Model Description
18
 
19
  <!-- Provide a longer summary of what this model is. -->
 
 
 
 
20
 
21
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
 
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
 
31
  ### Model Sources [optional]
32
 
33
  <!-- Provide the basic links for the model. -->
34
 
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
 
39
  ## Uses
40
 
41
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
42
 
43
  ### Direct Use
44
 
45
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  [More Information Needed]
48
 
@@ -61,6 +100,7 @@ This is the model card of a 🤗 transformers model that has been pushed on the
61
  ## Bias, Risks, and Limitations
62
 
63
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
64
 
65
  [More Information Needed]
66
 
 
4
  - text-generation
5
  - text-generation-inference
6
  - Inference Endpoints
7
+ license: mit
8
+ datasets:
9
+ - omeryentur/text-to-postgresql
10
+ language:
11
+ - en
12
+ metrics:
13
+ - rouge
14
+ pipeline_tag: text2text-generation
15
  ---
16
 
17
  # Model Card for Model ID
 
25
  ### Model Description
26
 
27
  <!-- Provide a longer summary of what this model is. -->
28
+ This model is fine-trained from the google/flan-t5-base model to achieve better accuracy on generating SQL Queries.
29
+ It has been trained to generate sql queries given a question and database schema(s).
30
+
31
+ It can be used in any of such applications where sql queries are needed (particularly Postgres queries).
32
 
33
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
34
 
35
+ - **Developed by:** Oghenerunor Adjekpiyede
36
+ - **Model type:** Text2TextGeneration
37
+ - **Language(s) (NLP):** English
38
+ - **License:** MIT
39
+ - **Finetuned from model [optional]:** google/flan-t5-base
 
 
40
 
41
  ### Model Sources [optional]
42
 
43
  <!-- Provide the basic links for the model. -->
44
 
45
+ - **Repository:** https://huggingface.co/kampkelly/sql-generator
 
 
46
 
47
  ## Uses
48
 
49
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
50
+ This model is to be used and performs well for generating SQL queries. This model for other tasks may not give satisfactory performance on generating text in other general use cases.
51
 
52
  ### Direct Use
53
 
54
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
55
+ Use with transformers
56
+ ```
57
+ from peft import PeftModel
58
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
59
+
60
+ model_base = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base", torch_dtype=torch.bfloat16, trust_remote_code=True)
61
+ model = PeftModel.from_pretrained(model_base,
62
+ peft_model_path,
63
+ torch_dtype=torch.bfloat16,
64
+ is_trainable=False)
65
+
66
+ input_ids = tokenizer(prompt, padding="max_length", max_length=300, truncation=True, return_tensors="pt").input_ids
67
+ model_output = model.generate(input_ids=input_ids, max_new_tokens = 300, use_cache = True,
68
+ num_beams=3,
69
+ do_sample=True,
70
+ top_k=50,
71
+ top_p=0.75,
72
+ temperature=0.1,
73
+ early_stopping=True
74
+ )
75
+ model_text_output = tokenizer.decode(model_output[0], skip_special_tokens=True)
76
+ print(model_text)
77
+
78
+ ```
79
+
80
+ ----
81
+ ```
82
+
83
+ ```
84
+
85
 
86
  [More Information Needed]
87
 
 
100
  ## Bias, Risks, and Limitations
101
 
102
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
103
+ This model is particularly good for generating SQL `Select` statement queries. Other types of query statements such as Create, Delete, Update, etc are not fully supported.
104
 
105
  [More Information Needed]
106