--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: output results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3191881918819188 --- # output This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Wer Ortho: 0.3166 - Wer: 0.3192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 15 - training_steps: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 2.9987 | 0.5172 | 15 | 1.7184 | 0.4640 | 0.4170 | | 0.7514 | 1.0345 | 30 | 0.5257 | 0.3790 | 0.3795 | | 0.307 | 1.5517 | 45 | 0.5051 | 0.3269 | 0.3253 | | 0.3075 | 2.0690 | 60 | 0.4907 | 0.3526 | 0.3518 | | 0.1492 | 2.5862 | 75 | 0.5120 | 0.3095 | 0.3106 | | 0.0719 | 3.1034 | 90 | 0.5336 | 0.3166 | 0.3192 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1