Arloha commited on
Commit
363b171
·
1 Parent(s): 4ca0d83

initial commit

Browse files
Files changed (8) hide show
  1. LICENSE +21 -0
  2. README.md +103 -0
  3. config.json +36 -0
  4. pytorch_model.bin +3 -0
  5. special_tokens_map.json +9 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +16 -0
  8. vocab.txt +0 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 kakaobank
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,106 @@
1
  ---
2
  license: mit
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - ko
5
+ pipeline_tag: fill-mask
6
  ---
7
+ # KF-DeBERTa
8
+ 카카오뱅크 & 에프엔가이드에서 학습한 금융 도메인 특화 언어모델을 공개합니다.
9
+
10
+ ## Model description
11
+ * KF-DeBERTa는 범용 도메인 말뭉치와 금융 도메인 말뭉치를 함께 학습한 언어모델 입니다.
12
+ * 모델 아키텍쳐는 [DeBERTa-v2](https://github.com/microsoft/DeBERTa#whats-new-in-v2)를 기반으로 학습하였습니다.
13
+ * ELECTRA의 RTD를 training objective로 사용한 DeBERTa-v3는 일부 task(KLUE-RE, WoS, Retrieval)에서 상당히 낮은 성능을 확인하여 최종 아키텍쳐는 DeBERTa-v2로 결정하였습니다.
14
+ * 범용 도메인 및 금융 도메인 downstream task에서 모두 우수한 성능을 확인하였습니다.
15
+ * 금융 도메인 downstream task의 철저한 성능검증을 위해 다양한 데이터셋을 통해 검증을 수행하였습니다.
16
+ * 범용 도메인 및 금융 도메인에서 기존 언어모델보다 더 나은 성능을 보여줬으며 특히 KLUE Benchmark에서는 RoBERTa-Large보다 더 나은 성능을 확인하였습니다.
17
+
18
+ ## Usage
19
+ ```python3
20
+ from transformers import AutoModel, AutoTokenizer
21
+
22
+ model = AutoModel.from_pretrained("kakaobank/kf-deberta-base")
23
+ tokenizer = AutoTokenizer.from_pretrained("kakaobank/kf-deberta-base")
24
+
25
+ text = "카카오뱅크와 에프엔가이드가 금융특화 언어모델을 공개합니다."
26
+ tokens = tokenizer.tokenize(text)
27
+ print(tokens)
28
+
29
+ inputs = tokenizer(text, return_tensors="pt")
30
+ model_output = model(**inputs)
31
+ print(model_output)
32
+ ```
33
+
34
+ ## Benchmark
35
+ * 모든 task는 아래와 같은 기본적인 hyperparameter search만 수행하였습니다.
36
+ * batch size: {16, 32}
37
+ * learning_rate: {1e-5, 3e-5, 5e-5}
38
+ * weight_decay: {0, 0.01}
39
+ * warmup_proportion: {0, 0.1}
40
+
41
+ **KLUE Benchmark**
42
+
43
+ | Model | YNAT | KLUE-ST | KLUE-NLI | KLUE-NER | KLUE-RE | KLUE-DP | KLUE-MRC | WoS | AVG |
44
+ |:--------------------:|:----------------:|:----------------------:|:------------:|:---------------------------------:|:-----------------------------:|:----------------------:|:-------------------------:|:----------------------:|:----------------:|
45
+ | | F1 | Pearsonr/F1 | ACC | F1-Entity/F1-Char | F1-micro/AUC | UAS/LAS | EM/ROUGE | JGA/F1-S | |
46
+ | mBERT (Base) | 82.64 | 82.97/75.93 | 72.90 | 75.56/88.81 | 58.39/56.41 | 88.53/86.04 | 49.96/55.57 | 35.27/88.60 | 71.26 |
47
+ | XLM-R (Base) | 84.52 | 88.88/81.20 | 78.23 | 80.48/92.14 | 57.62/57.05 | 93.12/87.23 | 26.76/53.36 | 41.54/89.81 | 72.28 |
48
+ | XLM-R (Large) | 87.30 | 93.08/87.17 | 86.40 | 82.18/93.20 | 58.75/63.53 | 92.87/87.82 | 35.23/66.55 | 42.44/89.88 | 76.17 |
49
+ | KR-BERT (Base) | 85.36 | 87.50/77.92 | 77.10 | 74.97/90.46 | 62.83/65.42 | 92.87/87.13 | 48.95/58.38 | 45.60/90.82 | 74.67 |
50
+ | KoELECTRA (Base) | 85.99 | 93.14/85.89 | 86.87 | 86.06/92.75 | 62.67/57.46 | 90.93/87.07 | 59.54/65.64 | 39.83/88.91 | 77.34 |
51
+ | KLUE-BERT (Base) | 86.95 | 91.01/83.44 | 79.87 | 83.71/91.17 | 65.58/68.11 | 93.07/87.25 | 62.42/68.15 | 46.72/91.59 | 78.50 |
52
+ | KLUE-RoBERTa (Small) | 85.95 | 91.70/85.42 | 81.00 | 83.55/91.20 | 61.26/60.89 | 93.47/87.50 | 58.25/63.56 | 46.65/91.50 | 77.28 |
53
+ | KLUE-RoBERTa (Base) | 86.19 | 92.91/86.78 | 86.30 | 83.81/91.09 | 66.73/68.11 | 93.75/87.77 | 69.56/74.64 | 47.41/91.60 | 80.48 |
54
+ | KLUE-RoBERTa (Large) | 85.88 | 93.20/86.13 | **89.50** | 84.54/91.45 | **71.06**/73.33 | 93.84/87.93 | **75.26**/**80.30** | 49.39/92.19 | 82.43 |
55
+ | KF-DeBERTa (Base) | **<u>87.51</u>** | **<u>93.24/87.73</u>** | <u>88.37</u> | **<u>89.17</u>**/**<u>93.30</u>** | <u>69.70</u>/**<u>75.07</u>** | **<u>94.05/87.97</u>** | <u>72.59</u>/<u>78.08</u> | **<u>50.21/92.59</u>** | **<u>82.83</u>** |
56
+
57
+ * 굵은글씨는 모든 모델중 가장높은 점수이며, 밑줄은 base 모델 중 가장 높은 점수입니다.
58
+
59
+ **금융도메인 벤치마크**
60
+ | Model | FN-Sentiment (v1) | FN-Sentiment (v2) | FN-Adnews | FN-NER | KorFPB | KorFiQA-SA | KorHeadline | Avg (FiQA-SA 제외) |
61
+ |:-------------------:|:-----------------:|:-----------------:|:---------:|:---------:|:---------:|:----------:|:-----------:|:-----------------:|
62
+ | | ACC | ACC | ACC | F1-micro | ACC | MSE | Mean F1 | |
63
+ | KLUE-RoBERTa (Base) | 98.26 | 91.21 | 96.34 | 90.31 | 90.97 | 0.0589 | 81.11 | 94.03 |
64
+ | KoELECTRA (Base) | 98.26 | 90.56 | 96.98 | 89.81 | 92.36 | 0.0652 | 80.69 | 93.90 |
65
+ | KF-DeBERTa (Base) | **99.36** | **92.29** | **97.63** | **91.80** | **93.47** | **0.0553** | **82.12** | **95.27** |
66
+
67
+ * **FN-Sentiment**: 금융도메인 감성분석
68
+ * **FN-Adnews**: 금융도메인 광고성기사 분류
69
+ * **FN-NER**: 금융도메인 개체명인식
70
+ * **KorFPB**: FinancialPhraseBank 번역데이터
71
+ * Cite: ```Malo, Pekka, et al. "Good debt or bad debt: Detecting semantic orientations in economic texts." Journal of the Association for Information Science and Technology 65.4 (2014): 782-796.```
72
+ * **KorFiQA-SA**: FiQA-SA 번역데이터
73
+ * Cite: ```Maia, Macedo & Handschuh, Siegfried & Freitas, Andre & Davis, Brian & McDermott, Ross & Zarrouk, Manel & Balahur, Alexandra. (2018). WWW'18 Open Challenge: Financial Opinion Mining and Question Answering. WWW '18: Companion Proceedings of the The Web Conference 2018. 1941-1942. 10.1145/3184558.3192301.```
74
+ * **KorHeadline**: Gold Commodity News and Dimensions 번역데이터
75
+ * Cite: ```Sinha, A., & Khandait, T. (2021, April). Impact of News on the Commodity Market: Dataset and Results. In
76
+ Future of Information and Communication Conference (pp. 589-601). Springer, Cham.```
77
+
78
+
79
+ **범용도메인 벤치마크**
80
+ | Model | NSMC | PAWS | KorNLI | KorSTS | KorQuAD | Avg (KorQuAD 제외) |
81
+ |:-------------------:|:---------:|:---------:|:---------:|:---------:|:---------------:|:----------------:|
82
+ | | ACC | ACC | ACC | spearman | EM/F1 | |
83
+ | KLUE-RoBERTa (Base) | 90.47 | 84.79 | 81.65 | 84.40 | 86.34/94.40 | 85.33 |
84
+ | KoELECTRA (Base) | 90.63 | 84.45 | 82.24 | 85.53 | 84.83/93.45 | 85.71 |
85
+ | KF-DeBERTa (Base) | **91.36** | **86.14** | **84.54** | **85.99** | **86.60/95.07** | **87.01** |
86
+
87
+
88
+
89
+ ## License
90
+ KF-DeBERTa의 소스코드 및 모델은 MIT 라이선스 하에 공개되어 있습니다.
91
+ 라이선스 전문은 [MIT 파일](LICENSE)에서 확인할 수 있습니다.
92
+ 모델의 사용으로 인해 발생한 어떠한 손해에 대해서도 당사는 책임을 지지 않습니다.
93
+
94
+ ## Citation
95
+ ```
96
+ @proceedings{jeon-etal-2023-kfdeberta,
97
+ title = {KF-DeBERTa: Financial Domain-specific Pre-trained Language Model},
98
+ author = {Eunkwang Jeon, Jungdae Kim, Minsang Song, and Joohyun Ryu},
99
+ booktitle = {Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology},
100
+ moth = {oct},
101
+ year = {2023},
102
+ publisher = {Korean Institute of Information Scientists and Engineers},
103
+ url = {http://www.hclt.kr/symp/?lnb=conference},
104
+ pages = {143--148},
105
+ }
106
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DebertaV2ForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "conv_act": "gelu",
7
+ "conv_kernel_size": 0,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-07,
14
+ "max_position_embeddings": 512,
15
+ "max_relative_positions": -1,
16
+ "model_type": "deberta-v2",
17
+ "norm_rel_ebd": "layer_norm",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_dropout": 0,
22
+ "pooler_hidden_act": "gelu",
23
+ "pooler_hidden_size": 768,
24
+ "pos_att_type": [
25
+ "p2c",
26
+ "c2p"
27
+ ],
28
+ "position_biased_input": false,
29
+ "position_buckets": 256,
30
+ "relative_attention": true,
31
+ "share_att_key": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.27.4",
34
+ "type_vocab_size": 0,
35
+ "vocab_size": 130000
36
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cd6cd7811b3c9190e97cae7eb41571c2bc0076431baae7d41d449a8c1c18c6c
3
+ size 745694717
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_lower_case": false,
3
+ "do_basic_tokenize": true,
4
+ "never_split": null,
5
+ "unk_token": "[UNK]",
6
+ "sep_token": "[SEP]",
7
+ "pad_token": "[PAD]",
8
+ "cls_token": "[CLS]",
9
+ "mask_token": "[MASK]",
10
+ "bos_token": "[CLS]",
11
+ "eos_token": "[SEP]",
12
+ "tokenize_chinese_chars": true,
13
+ "strip_accents": null,
14
+ "model_max_length": 512,
15
+ "tokenizer_class": "BertTokenizer"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff