--- library_name: transformers license: mit base_model: intfloat/e5-base tags: - generated_from_trainer model-index: - name: e5-base-german-sentence-similarity results: [] datasets: - PhilipMay/stsb_multi_mt language: - de metrics: - pearsonr pipeline_tag: sentence-similarity --- # e5-base-german-sentence-similarity This model is a fine-tuned version of [intfloat/e5-base](https://huggingface.co/intfloat/e5-base) on german subset of the stsb_multi_mt dataset. It achieves the following results on the evaluation set: Validation: - Loss: 0.9118 - Pearson: 0.7952 Test: - Loss: 1.2162 - Pearson: 0.7252 ## Usage ```python #install sentence-transformers !pip install -U sentence-transformers from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("kaixkhazaki/e5-base-german-sentence-similarity") sentences = [ 'Ein älterer Herr genießt die Natur auf einer Parkbank.', 'Ein alter Mann vertieft sich in eine Zeitung im Stadtpark.', 'Ein Teenager hört Musik auf einer Bank.' ] embeddings = model.encode(sentences) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) >> tensor([[1.0000, 0.9044, 0.7919], [0.9044, 1.0000, 0.7757], [0.7919, 0.7757, 1.0000]]) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data - **Dataset:** [STS Benchmark](https://huggingface.co/datasets/stsb_multi_mt) - ## Training procedure additional dropout implemented on model to avoid overfitting(hidden_dropout_prob=0.25 ,attention_probs_dropout_prob = 0.25) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.6556 | 1.0 | 360 | 1.3086 | 0.7176 | | 1.0113 | 2.0 | 720 | 1.2079 | 0.7563 | | 1.0205 | 3.0 | 1080 | 1.2091 | 0.7639 | | 0.8876 | 4.0 | 1440 | 0.9325 | 0.7910 | | 0.6762 | 5.0 | 1800 | 0.9118 | 0.7952 | | 0.5615 | 6.0 | 2160 | 0.9772 | 0.7910 | | 0.6387 | 7.0 | 2520 | 0.9085 | 0.7933 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.2.2 - Datasets 3.2.0 - Tokenizers 0.21.0