--- language: - en license: mit base_model: - mistralai/Mistral-7B-v0.1 datasets: - argilla/ultrafeedback-binarized-preferences-cleaned pipeline_tag: text-generation model-index: - name: Mistral-ORPO-β results: # AI2 Reasoning Challenge (25-Shot) - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm name: normalized accuracy value: 61.18 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta # HellaSwag (10-shot) - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm name: normalized accuracy value: 84.03 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta # TruthfulQA (0-shot) - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 47.69 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta # GSM8k (5-shot) - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 39.8 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta # MMLU (5-Shot) - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 63.26 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta # Winogrande (5-shot) - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc name: accuracy value: 79.24 source: name: Open LLM Leaderboard url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta - task: type: text-generation dataset: name: AlpacaEval 1 type: AlpacaEval metrics: - type: AlpacaEval 1.0 value: 91.41% name: Win Rate source: url: https://github.com/tatsu-lab/alpaca_eval name: self-reported - task: type: text-generation dataset: name: AlpacaEval 2 type: AlpacaEval metrics: - type: AlpacaEval 2.0 value: 12.20% name: Win Rate source: url: https://github.com/tatsu-lab/alpaca_eval name: self-reported - task: type: text-generation dataset: name: MT-Bench type: MT-Bench metrics: - type: MT-Bench value: 7.322 name: Score source: url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/ name: self-reported --- # **Mistral-ORPO-β (7B)** **Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *odds ratio preference optimization (ORPO)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-β** is fine-tuned exclusively on the 61k instances of the cleaned version of UltraFeedback, [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), by [Argilla](https://huggingface.co/argilla). - **Github Repository**: https://github.com/xfactlab/orpo ## 👍 **Model Performance** ### 1) AlpacaEval & MT-Bench |Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0| |:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:| |**Mistral-ORPO-⍺**|7B|ORPO|7.23|87.92|11.33| |**Mistral-ORPO-β**|7B|ORPO|7.32|91.41|12.20| |Zephyr β |7B|DPO|7.34|90.60|10.99| |TULU-2-DPO |13B|DPO|7.00|89.5|10.12| |Llama-2-Chat |7B|RLHF|6.27|71.37|4.96| |Llama-2-Chat |13B|RLHF|6.65|81.09|7.70| ### 2) IFEval | **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** | |--------------------|:-----------------:|:----------------:|:---------------:|:--------------:| | **Mistral-ORPO-⍺** | 0.5009 | 0.5083 | 0.5995 | 0.6163 | | **Mistral-ORPO-β** | 0.5287 | 0.5564 | 0.6355 | 0.6619 | ## 🗺️ **MT-Bench by Category** ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6415c043486c7c9a5d151583/1Ifpt0ljCfJPEoZAqlqqy.png) ## 🖥️ **Inference** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-beta") tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-beta") # Apply chat template query = [{'role': 'user', 'content': 'Hi! How are you doing?'}] prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors='pt') # Generation with specific configurations output = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7 ) response = tokenizer.batch_decode(output) #<|user|> #Hi! How are you doing? #<|assistant|> #I'm doing well, thank you! How are you? ```