--- language: - en license: apache-2.0 base_model: - mistralai/Mistral-7B-v0.1 datasets: - argilla/ultrafeedback-binarized-preferences-cleaned pipeline_tag: text-generation model-index: - name: Mistral-ORPO-β results: - task: type: text-generation dataset: name: AlpacaEval 1 type: AlpacaEval metrics: - type: AlpacaEval 1.0 value: 91.41% name: Win Rate - type: AlpacaEval 2.0 value: 12.20% name: Win Rate source: url: https://github.com/tatsu-lab/alpaca_eval name: self-reported - task: type: text-generation dataset: name: MT-Bench type: MT-Bench metrics: - type: MT-Bench value: 7.322 name: Score source: url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/ name: self-reported --- # **Mistral-ORPO-β (7B)** **Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *odds ratio preference optimization (ORPO)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-β** is fine-tuned exclusively on the 61k instances of the cleaned version of UltraFeedback, [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), by [Argilla](https://huggingface.co/argilla). ## Model Performance |Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0| |:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:| |**Mistral-ORPO-⍺**|7B|ORPO|7.23|87.92|11.33| |**Mistral-ORPO-β**|7B|ORPO|7.32|91.41|12.20| |Zephyr ($\beta$) |7B|DPO|7.34|90.60|10.99| |TULU-2-DPO |13B|DPO|7.00|89.5|10.12| |Llama-2-Chat |7B|RLHF|6.27|71.37|4.96| |Llama-2-Chat |13B|RLHF|6.65|81.09|7.70| ## Chat Template ``` <|user|> Hi! How are you doing? <|assistant|> ```