---
language:
- en
license: apache-2.0
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
pipeline_tag: text-generation
model-index:
- name: Mistral-ORPO-β
results:
- task:
type: text-generation
dataset:
name: AlpacaEval 1
type: AlpacaEval
metrics:
- type: AlpacaEval 1.0
value: 91.41%
name: Win Rate
- type: AlpacaEval 2.0
value: 12.20%
name: Win Rate
source:
url: https://github.com/tatsu-lab/alpaca_eval
name: self-reported
- task:
type: text-generation
dataset:
name: MT-Bench
type: MT-Bench
metrics:
- type: MT-Bench
value: 7.322
name: Score
source:
url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
name: self-reported
---
# **Mistral-ORPO-β (7B)**
**Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *odds ratio preference optimization (ORPO)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-β** is fine-tuned exclusively on the 61k instances of the cleaned version of UltraFeedback, [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), by [Argilla](https://huggingface.co/argilla).
## Model Performance
|Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0|
|:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:|
|**Mistral-ORPO-⍺**|7B|ORPO|7.23|87.92|11.33|
|**Mistral-ORPO-β**|7B|ORPO|7.32|91.41|12.20|
|Zephyr ($\beta$) |7B|DPO|7.34|90.60|10.99|
|TULU-2-DPO |13B|DPO|7.00|89.5|10.12|
|Llama-2-Chat |7B|RLHF|6.27|71.37|4.96|
|Llama-2-Chat |13B|RLHF|6.65|81.09|7.70|
## Chat Template
```
<|user|>
Hi! How are you doing?
<|assistant|>
```