--- license: gpl-3.0 tags: - object-detection - computer-vision - yolov7 - pypi datasets: - detection-datasets/coco --- ### Model Description [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) [YOLOv7-Pip: Packaged version of the Yolov7 repository](https://github.com/kadirnar/yolov7-pip) [Paper Repo: Implementation of paper - YOLOv7](https://github.com/WongKinYiu/yolov7) ### Documents [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) ### Installation ``` pip install yolov7detect ``` ### Yolov7 Inference ```python import yolov7 # load pretrained or custom model model = yolov7.load('kadirnar/yolov7-tiny-v0.1') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.classes = None # (optional list) filter by class # set image imgs = 'inference/images' # perform inference results = model(imgs) # inference with larger input size and test time augmentation results = model(img, size=1280, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() ``` ### BibTeX Entry and Citation Info ``` @article{wang2022yolov7, title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, journal={arXiv preprint arXiv:2207.02696}, year={2022} } ```