--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.6139 - Answer: {'precision': 0.8076923076923077, 'recall': 0.8739290085679314, 'f1': 0.8395061728395062, 'number': 817} - Header: {'precision': 0.3148148148148148, 'recall': 0.42857142857142855, 'f1': 0.36298932384341637, 'number': 119} - Question: {'precision': 0.796595744680851, 'recall': 0.8690807799442897, 'f1': 0.8312611012433393, 'number': 1077} - Overall Precision: 0.7659 - Overall Recall: 0.8450 - Overall F1: 0.8035 - Overall Accuracy: 0.8009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 260 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.7536 | 2.67 | 200 | 0.6139 | {'precision': 0.8076923076923077, 'recall': 0.8739290085679314, 'f1': 0.8395061728395062, 'number': 817} | {'precision': 0.3148148148148148, 'recall': 0.42857142857142855, 'f1': 0.36298932384341637, 'number': 119} | {'precision': 0.796595744680851, 'recall': 0.8690807799442897, 'f1': 0.8312611012433393, 'number': 1077} | 0.7659 | 0.8450 | 0.8035 | 0.8009 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2