--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: VF_BERT_ST_1800 results: [] --- # VF_BERT_ST_1800 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2457 - Precision: 0.9489 - Recall: 0.9480 - F1: 0.9485 - Accuracy: 0.9405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.4723 | 0.8973 | 0.9212 | 0.9091 | 0.8971 | | No log | 2.0 | 60 | 0.3328 | 0.9146 | 0.9288 | 0.9217 | 0.9076 | | No log | 3.0 | 90 | 0.3022 | 0.9316 | 0.9301 | 0.9308 | 0.9168 | | No log | 4.0 | 120 | 0.2758 | 0.9207 | 0.9398 | 0.9301 | 0.9169 | | No log | 5.0 | 150 | 0.2592 | 0.9392 | 0.9431 | 0.9411 | 0.9322 | | No log | 6.0 | 180 | 0.2586 | 0.9445 | 0.9449 | 0.9447 | 0.9366 | | No log | 7.0 | 210 | 0.2519 | 0.9476 | 0.9447 | 0.9461 | 0.9372 | | No log | 8.0 | 240 | 0.2468 | 0.9464 | 0.9474 | 0.9469 | 0.9394 | | No log | 9.0 | 270 | 0.2475 | 0.9486 | 0.9476 | 0.9481 | 0.9399 | | No log | 10.0 | 300 | 0.2457 | 0.9489 | 0.9480 | 0.9485 | 0.9405 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1