--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: VF_BERT_ST_1800 results: [] --- # VF_BERT_ST_1800 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1814 - Precision: 0.8104 - Recall: 0.8406 - F1: 0.8252 - Accuracy: 0.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2052 | 1.0 | 569 | 0.1207 | 0.7731 | 0.8082 | 0.7903 | 0.9622 | | 0.0774 | 2.0 | 1138 | 0.1369 | 0.8062 | 0.7998 | 0.8030 | 0.9629 | | 0.0507 | 3.0 | 1707 | 0.1351 | 0.8127 | 0.8386 | 0.8254 | 0.9654 | | 0.0328 | 4.0 | 2276 | 0.1331 | 0.8005 | 0.8414 | 0.8204 | 0.9658 | | 0.0221 | 5.0 | 2845 | 0.1398 | 0.8144 | 0.8429 | 0.8284 | 0.9668 | | 0.0157 | 6.0 | 3414 | 0.1481 | 0.8137 | 0.8401 | 0.8267 | 0.9671 | | 0.0117 | 7.0 | 3983 | 0.1804 | 0.8110 | 0.8439 | 0.8271 | 0.9650 | | 0.0062 | 8.0 | 4552 | 0.1731 | 0.8133 | 0.8434 | 0.8281 | 0.9658 | | 0.005 | 9.0 | 5121 | 0.1835 | 0.8100 | 0.8416 | 0.8255 | 0.9660 | | 0.0043 | 10.0 | 5690 | 0.1814 | 0.8104 | 0.8406 | 0.8252 | 0.9657 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1