--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: VF_BERT_ST_1000 results: [] --- # VF_BERT_ST_1000 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1765 - Precision: 0.9705 - Recall: 0.9755 - F1: 0.9730 - Accuracy: 0.9636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 259 | 0.1575 | 0.9595 | 0.9658 | 0.9626 | 0.9503 | | 0.2118 | 2.0 | 518 | 0.1388 | 0.9660 | 0.9743 | 0.9701 | 0.9597 | | 0.2118 | 3.0 | 777 | 0.1366 | 0.9688 | 0.9734 | 0.9711 | 0.9613 | | 0.0546 | 4.0 | 1036 | 0.1488 | 0.9673 | 0.9726 | 0.9699 | 0.9603 | | 0.0546 | 5.0 | 1295 | 0.1663 | 0.9675 | 0.9736 | 0.9705 | 0.9609 | | 0.0251 | 6.0 | 1554 | 0.1673 | 0.9685 | 0.9750 | 0.9717 | 0.9628 | | 0.0251 | 7.0 | 1813 | 0.1708 | 0.9707 | 0.9753 | 0.9730 | 0.9639 | | 0.0133 | 8.0 | 2072 | 0.1707 | 0.9701 | 0.9742 | 0.9721 | 0.9631 | | 0.0133 | 9.0 | 2331 | 0.1771 | 0.9703 | 0.9754 | 0.9728 | 0.9635 | | 0.0094 | 10.0 | 2590 | 0.1765 | 0.9705 | 0.9755 | 0.9730 | 0.9636 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1