--- license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_BIOMAT_NER1800 results: [] --- # MatSciBERT_BIOMAT_NER1800 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Precision: 0.9841 - Recall: 0.9758 - F1: 0.9799 - Accuracy: 0.9728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.186 | 1.0 | 869 | 0.0890 | 0.9831 | 0.9762 | 0.9796 | 0.9730 | | 0.0519 | 2.0 | 1738 | 0.0944 | 0.9834 | 0.9773 | 0.9803 | 0.9744 | | 0.0293 | 3.0 | 2607 | 0.1101 | 0.9832 | 0.9748 | 0.9790 | 0.9721 | | 0.0185 | 4.0 | 3476 | 0.1348 | 0.9823 | 0.9752 | 0.9788 | 0.9721 | | 0.0086 | 5.0 | 4345 | 0.1421 | 0.9823 | 0.9746 | 0.9785 | 0.9715 | | 0.0054 | 6.0 | 5214 | 0.1755 | 0.9835 | 0.9719 | 0.9777 | 0.9693 | | 0.0032 | 7.0 | 6083 | 0.1706 | 0.9831 | 0.9735 | 0.9783 | 0.9709 | | 0.0027 | 8.0 | 6952 | 0.1774 | 0.9840 | 0.9756 | 0.9798 | 0.9729 | | 0.0017 | 9.0 | 7821 | 0.1825 | 0.9841 | 0.9749 | 0.9795 | 0.9717 | | 0.001 | 10.0 | 8690 | 0.1788 | 0.9841 | 0.9758 | 0.9799 | 0.9728 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1