--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_BIOMAT_NER__ST_1000_DA results: [] --- # BERT_BIOMAT_NER__ST_1000_DA This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4791 - Precision: 0.4732 - Recall: 0.6716 - F1: 0.5552 - Accuracy: 0.9364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 397 | 0.2764 | 0.4422 | 0.5997 | 0.5090 | 0.9323 | | 0.2077 | 2.0 | 794 | 0.3185 | 0.4682 | 0.6485 | 0.5438 | 0.9356 | | 0.0466 | 3.0 | 1191 | 0.3461 | 0.4699 | 0.6592 | 0.5487 | 0.9362 | | 0.0179 | 4.0 | 1588 | 0.3994 | 0.4567 | 0.6595 | 0.5397 | 0.9342 | | 0.0179 | 5.0 | 1985 | 0.4091 | 0.4735 | 0.6733 | 0.5560 | 0.9369 | | 0.0088 | 6.0 | 2382 | 0.4392 | 0.4701 | 0.6630 | 0.5501 | 0.9366 | | 0.0048 | 7.0 | 2779 | 0.4594 | 0.4654 | 0.6644 | 0.5473 | 0.9356 | | 0.0032 | 8.0 | 3176 | 0.4684 | 0.4740 | 0.6775 | 0.5578 | 0.9369 | | 0.0024 | 9.0 | 3573 | 0.4763 | 0.4703 | 0.6623 | 0.5500 | 0.9359 | | 0.0024 | 10.0 | 3970 | 0.4791 | 0.4732 | 0.6716 | 0.5552 | 0.9364 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1