--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Accuracy: 0.87 - Loss: 0.4960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.9026 | 1.0 | 113 | 0.47 | 1.8157 | | 1.4077 | 2.0 | 226 | 0.65 | 1.3151 | | 1.1509 | 3.0 | 339 | 0.71 | 1.0788 | | 0.8387 | 4.0 | 452 | 0.76 | 0.9460 | | 0.5495 | 5.0 | 565 | 0.72 | 0.8380 | | 0.5633 | 6.0 | 678 | 0.85 | 0.5783 | | 0.4959 | 7.0 | 791 | 0.84 | 0.5539 | | 0.1397 | 8.0 | 904 | 0.86 | 0.4837 | | 0.1556 | 9.0 | 1017 | 0.87 | 0.5125 | | 0.0785 | 10.0 | 1130 | 0.87 | 0.4960 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1