--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MBERT_uncased_GeneralizedCrossEntropy_full_ft results: [] --- # MBERT_uncased_GeneralizedCrossEntropy_full_ft This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.802 - F1: 0.8584 - Precision: 0.8310 - Recall: 0.8876 - Roc Auc: 0.7555 - Loss: 0.2729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Roc Auc | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------:|:------:|:-------:|:---------------:| | No log | 0.992 | 62 | 0.77 | 0.8487 | 0.7642 | 0.9541 | 0.6700 | 0.3336 | | 0.3578 | 2.0 | 125 | 0.805 | 0.8567 | 0.8511 | 0.8624 | 0.7738 | 0.2695 | | 0.3578 | 2.976 | 186 | 0.802 | 0.8584 | 0.8310 | 0.8876 | 0.7555 | 0.2729 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3