{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5069f435c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682531118267572815, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMCqhD60uDK/Cc1nvnCXNj8LCqW/q7+KP46qD76UMSe/xCB2v86vgD9pYKE/0Z2vPhpfSj1oxQE/dlILP2Hxqzzlu5Y/zE8Ov5Tg6L5mX7u+Vv5mvXWRQr8l8Jg/tUkDwM5nNz9UWqU+/A8dP/dhaL97KIy6QmAjv/aRBL7rtyc/kvENPleKjD3riva+dngAPPRwtr9aDhTAwvgcv4FbIj+Ld7698WbgvvyUDj+LtxO9LFVNP+0R7T9QLGm+sXKdvv9L5T0bHwbAOC69P51a5j4KqrK/VFqlPmGh0L9AAo0/Bl4QPvsZIb/x/Oy9I4ATP8zIfr0yp4i9WhBqv+jfzr0XjZu/0CK+PgFJ3j4HWbc/M2GVP+LMp7xIK8c+B1JlQMxCzD+7/di+QRnHPnz2mL+GBCM/LPPPv/HprT+ufTQ/zmc3P1RapT5hodC/92Fov3gI7z4oqQm/TwOQPOwGhD8/blC/wQqXP7UPBL8g3/q+mKIuvwcu0j8hEGg/q4gBP3790j6h2hJAntwKP0mUkzyuOMQ+QJVQvWoyRb/5mn8+OPIkv1un0D5MvCU/TY2TPs5nNz9UWqU+/A8dP/dhaL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC/bbG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR64vPQAAAAChaea/AAAAAPG4B74AAAAASmHoPwAAAABGfyI9AAAAAO4G3D8AAAAAMgzAPQAAAAC/q+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq3dltgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO49h7wAAAAArNMAwAAAAABZ34q8AAAAAB247T8AAAAAAQq6vQAAAADPtvA/AAAAABLgWD0AAAAAUu37vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG5Cc7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA9/Su9AAAAADfj/r8AAAAAICjzvQAAAADyPts/AAAAAFo2zzsAAAAAr7bpPwAAAACK+7Y9AAAAAJ/Z2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSNs41AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMsCfPQAAAAAx3ti/AAAAAAtb4j0AAAAAnw7zPwAAAAAYBgE+AAAAABgn4z8AAAAAz2e7PQAAAAAAvPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJbj17SiM5yMAWyUTegDjAF0lEdArRaH6GgzxnV9lChoBkdAmKq7nHNorWgHTegDaAhHQK0Z3Tx5LRN1fZQoaAZHQJdVvxEv0yxoB03oA2gIR0CtHyfPomojdX2UKGgGR0CU1mDnvDxcaAdN6ANoCEdArR9qR2bG3nV9lChoBkdAlyTxq46OpGgHTegDaAhHQK0ko6reZXx1fZQoaAZHQJjdCnMt9QZoB03oA2gIR0CtJ4gPd2xIdX2UKGgGR0CWy+X7+DODaAdN6ANoCEdArSz1GgBcRnV9lChoBkdAmVABT0g8sGgHTegDaAhHQK0tOBZIQOF1fZQoaAZHQJhqHerMkhRoB03oA2gIR0CtNJUMgEEDdX2UKGgGR0CZb/pX6qKhaAdN6ANoCEdArTgg9vCMxXV9lChoBkdAmm4q6WgOBmgHTegDaAhHQK09p1dPci51fZQoaAZHQJaAt6u4gA9oB03oA2gIR0CtPe2yTpxFdX2UKGgGR0CZFoi8nNPhaAdN6ANoCEdArUMZUFSsKnV9lChoBkdAl1Y225QP7WgHTegDaAhHQK1FW6q814x1fZQoaAZHQJHjIPBi1AtoB03oA2gIR0CtStNVrAP/dX2UKGgGR0CYsljNIK+jaAdN6ANoCEdArUshIH1OCXV9lChoBkdAmi5UypJf6WgHTegDaAhHQK1SJNKyv9t1fZQoaAZHQJk4up97WupoB03oA2gIR0CtVamG/N7jdX2UKGgGR0CU9WhVU+9raAdN6ANoCEdArVusVLzwt3V9lChoBkdAmC+FaGHpKWgHTegDaAhHQK1b8p84Pwx1fZQoaAZHQJYHXS6UaAFoB03oA2gIR0CtYRsUqQRxdX2UKGgGR0CWKCUFjd56aAdN6ANoCEdArWOXA6+36XV9lChoBkdAmjPvKISDiGgHTegDaAhHQK1pkKKpDNR1fZQoaAZHQJeu1SXMQmNoB03oA2gIR0CtaddSMtK7dX2UKGgGR0CXf+yI55quaAdN6ANoCEdArXCm7aqS5nV9lChoBkdAl8UasdT5wmgHTegDaAhHQK10REWIoE11fZQoaAZHQJlZCWu5jH5oB03oA2gIR0CtenptSAH3dX2UKGgGR0CXqDUliSaFaAdN6ANoCEdArXq/ocJdB3V9lChoBkdAl9kQCfYjB2gHTegDaAhHQK1/5gXMyJt1fZQoaAZHQJj7bKHO8kFoB03oA2gIR0CtgjnNgSezdX2UKGgGR0CbjFstkFwDaAdN6ANoCEdArYfAZOzpo3V9lChoBkdAlqzvgeii7GgHTegDaAhHQK2IBYXfqHJ1fZQoaAZHQJvfdTjvNNdoB03oA2gIR0Ctjmq9XcQAdX2UKGgGR0Ca3AXPJJXhaAdN6ANoCEdArZHc3S8aoHV9lChoBkdAnI07mdRR/GgHTegDaAhHQK2YdNet0V91fZQoaAZHQJk1jT3IuGtoB03oA2gIR0CtmLlme18cdX2UKGgGR0CbEX/vv0AcaAdN6ANoCEdArZ32tQsPKHV9lChoBkdAmpof0VafSWgHTegDaAhHQK2gSeLehwl1fZQoaAZHQJp2RbmlqJxoB03oA2gIR0CtpnmlqJuVdX2UKGgGR0CaxIhRZU1iaAdN6ANoCEdAraa/Zf2K23V9lChoBkdAmf1xDTjNp2gHTegDaAhHQK2tG/0ulGh1fZQoaAZHQJregsunMt9oB03oA2gIR0CtsI+d07r+dX2UKGgGR0CY8yWeYlY2aAdN6ANoCEdArbcglnh86XV9lChoBkdAmzKJAD7qIWgHTegDaAhHQK23Y4bS7Xh1fZQoaAZHQJ5qZdu5z5poB03oA2gIR0CtvIzdk8RudX2UKGgGR0CdavgYP5HmaAdN6ANoCEdArb7UXzlLe3V9lChoBkdAmywp6lchT2gHTegDaAhHQK3ETYL9deJ1fZQoaAZHQJ7GCEHt4RpoB03oA2gIR0CtxJDz7MxHdX2UKGgGR0CcyUNKRMewaAdN6ANoCEdArcpleWv8qHV9lChoBkdAnP82HDaXbGgHTegDaAhHQK3Nqv0RODd1fZQoaAZHQJrHsqur6tVoB03oA2gIR0Ct1OCGnGbTdX2UKGgGR0Cb3w93KSxJaAdN6ANoCEdArdUkpNKywHV9lChoBkdAlQZJW3jMmmgHTegDaAhHQK3aXMXaakR1fZQoaAZHQJeqjLfUF0RoB03oA2gIR0Ct3K3aSLZSdX2UKGgGR0CVO2xH5JsgaAdN6ANoCEdAreK7QNTcZnV9lChoBkdAltQtYSxqwmgHTegDaAhHQK3jDt65Xlt1fZQoaAZHQJRqMDklu3toB03oA2gIR0Ct6Pd7WuoxdX2UKGgGR0CT4kS75Ec9aAdN6ANoCEdArexOtlqagHV9lChoBkdAldlPTXrdFmgHTegDaAhHQK3zvuUliSd1fZQoaAZHQJOHldAxBVxoB03oA2gIR0Ct9ARTsIE9dX2UKGgGR0CVXDEG7jDLaAdN6ANoCEdArfk3KbKA8XV9lChoBkdAllGqqbSZ0GgHTegDaAhHQK37hlKbrkd1fZQoaAZHQJXZKKFZgXxoB03oA2gIR0CuAQKOtGNJdX2UKGgGR0CUwHnWrfcfaAdN6ANoCEdArgFHVAiV0XV9lChoBkdAlLP2d/axo2gHTegDaAhHQK4GzCoCMgl1fZQoaAZHQIyIOAy2x6hoB03oA2gIR0CuCg4W1twadX2UKGgGR0CTU6aR6nivaAdN6ANoCEdArhHD/GVAzHV9lChoBkdAjvMHX2/SIGgHTegDaAhHQK4SDGNJe3R1fZQoaAZHQJH7TWy1NQFoB03oA2gIR0CuF0W1MM7VdX2UKGgGR0CTucThYNiIaAdN6ANoCEdArhmLOcDr7nV9lChoBkdAl3FwU+LWJGgHTegDaAhHQK4e4CsfaHt1fZQoaAZHQJdgkjD8+A5oB03oA2gIR0CuHz94mkWRdX2UKGgGR0CWgv4yoGY8aAdN6ANoCEdAriUGEZiuuHV9lChoBkdAlh1KKYRdyGgHTegDaAhHQK4oOtbs4T91fZQoaAZHQJPjR8twrDtoB03oA2gIR0CuMA7vXsgMdX2UKGgGR0CSojAT7EYPaAdN6ANoCEdArjBRrFfiP3V9lChoBkdAkI9uRs/IKmgHTegDaAhHQK41bf5ULlV1fZQoaAZHQJKCsBxPwd9oB03oA2gIR0CuN7kaVD8cdX2UKGgGR0CThmBLwnYyaAdN6ANoCEdArj0kSkCV8nV9lChoBkdAl2ru4oZydWgHTegDaAhHQK49aeaKDTV1fZQoaAZHQJVJw/keZG9oB03oA2gIR0CuQo6F/QSjdX2UKGgGR0CTyLy9EkSmaAdN6ANoCEdArkVP8n/kvXV9lChoBkdAl4wM9Oh0yWgHTegDaAhHQK5NNEHdGiJ1fZQoaAZHQJfWubtqpLpoB03oA2gIR0CuTaHUMG5ddX2UKGgGR0CTRGRqXWvsaAdN6ANoCEdArlLlZid8RnV9lChoBkdAmnMxcJMQE2gHTegDaAhHQK5VHaB7NSt1fZQoaAZHQJmhrYPGyX5oB03oA2gIR0CuWnaPbO/tdX2UKGgGR0CXYcKLbYbsaAdN6ANoCEdArlq7KA8SwnV9lChoBkdAlZsXqVyFPGgHTegDaAhHQK5gpi8WbgF1fZQoaAZHQI3VYigTRIBoB03oA2gIR0CuY0DBMzuXdX2UKGgGR0CRj5pWFN+LaAdN6ANoCEdArmsyGi5/b3V9lChoBkdAlMtMTviLl2gHTegDaAhHQK5rnGRV6u51fZQoaAZHQJjZhsabWmRoB03oA2gIR0CucSp2MbWFdX2UKGgGR0CZUFWac7QtaAdN6ANoCEdArnNjRplBhXV9lChoBkdAnToTFqBVdWgHTegDaAhHQK541VEuxr11fZQoaAZHQJuGaN70Fr5oB03oA2gIR0CueR9IPK+0dX2UKGgGR0CZaVsNDtw8aAdN6ANoCEdArn5GVZ9uxnV9lChoBkdAmIk5k078vWgHTegDaAhHQK6AifQKKHh1fZQoaAZHQJoZBK02LpBoB03oA2gIR0CuiEtQbdaddX2UKGgGR0Cb9Ku/k/8maAdN6ANoCEdAroi4jGDL83VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}