{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2472c03100>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682482881614226268, "learning_rate": 3e-05, "tensorboard_log": "logs/fit/20230426-042040", "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+/3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC/Uhr83v+Q/jJv5v1GU/7xB5ls9K+ukPWPrr70mh7U7NhmIv7pHmLsjIki/Fr8KvfcqQb9sMlS7eNwnP1uCjzzv8uK+zGh8ul9mKz88HZ88L3Zqv2ugBTo2LSG/cG3YvEVfHT9vkyE/BlMdP/aSOT/zXZo/qRPOv/OLDL9ELzI9z/ALwC4KDr9+KAK+D+E5PaqFpj8m5oG69eCDPyzSDr7oLI2/hGRdP2Mm1b1BB2DAPje2v+kTHLz7CLS/uXF9v/pkYb8OT5g/tm6QPxfP4b9FONC/cc3KvwZTHT+Pk7C/6/XOPr7hMj90a/w+p4A2PEhtX7w5FmI9ki3SvtG1Xb+BEo+/4Pu5O/Mvlz/k6Pa87g6gP08QQLtFcSg/c1rmPOd+iz/KgAK8n/AqP59hWrsspWq/Ben0O9YMvD+neNK+RV8dP2+TIT96SNC/j5Owvz2umb+ySig/LGYDP/WLZL2YsLc9T8rrPYByjb2sv6Y+dzCbP5EDyLoyXoS/GgKSvBrYOz3oDeE/ChooPz9KDbxde6a/sW9ePLgZED/5kWE7eJa3P3owzzqYV1W/daEqvUVfHT9xzcq/BlMdP/aSOT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmZFy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALx9pPQAAAABMUvG/AAAAAOwGb70AAAAAJnjoPwAAAADTwGm9AAAAAOQ28T8AAAAAptn3vAAAAABtZOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxpy4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPlaDj4AAAAAEXTZvwAAAABjICc8AAAAALsH9j8AAAAArBsMvgAAAAA8tOk/AAAAAFMI3LwAAAAAufL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBqAjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAqyZK8AAAAANQk378AAAAAg6GSvAAAAADNivM/AAAAAG1meLsAAAAADP/aPwAAAACpzNS8AAAAADeS4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwOpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfho2vQAAAAB/2/y/AAAAAOVnpT0AAAAAIuDpPwAAAAAtRKu9AAAAAMM8+D8AAAAAFYj3uwAAAAAH1dm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGw7HYpUgjiMAWyUTegDjAF0lEdAsOODTRYzSHV9lChoBkdAbxXU70WdmWgHTcEDaAhHQLDkOp2ll9V1fZQoaAZHQGPuguyu6mRoB03oA2gIR0Cw5Sxt+CsfdX2UKGgGR0Bizuhdt2s8aAdN6ANoCEdAsOmtbQkX13V9lChoBkdAbJWbLEDQq2gHTegDaAhHQLDre9deIEd1fZQoaAZHQFiNmMwUQCloB03oA2gIR0Cw6/5/9YOldX2UKGgGR0Bjm7DVH4GmaAdN6ANoCEdAsOzq2y9mH3V9lChoBkdAYuCdEsrd32gHTegDaAhHQLDwgJiAlOZ1fZQoaAZHQG6HxtP557hoB03oA2gIR0Cw8m+rELpidX2UKGgGR0Bwjo9lmOENaAdN6ANoCEdAsPMgtjCpFXV9lChoBkdAaK3KdxyXD2gHTegDaAhHQLD0CdxyXD51fZQoaAZHwF7GxT850bNoB01HAmgIR0Cw9UxxT850dX2UKGgGR0BxFdnjABT5aAdN6ANoCEdAsPpnitJWenV9lChoBke/8nA/LTx5LWgHSxRoCEdAsPqHpB5X2nV9lChoBkdAX+PBZZB9kWgHTegDaAhHQLD65ZSvTw51fZQoaAZHQHAoYqG1x85oB03oA2gIR0Cw+40Z75VPdX2UKGgGRz/OT5ftx+8XaAdLFGgIR0Cw+65MHryEdX2UKGgGR0BaABXXAdn1aAdN6ANoCEdAsPxkEq2BrnV9lChoBkdAEV7O3UhFE2gHTV4BaAhHQLD9J5Xlr/N1fZQoaAZHv8rZ6D5CWu5oB0tCaAhHQLD9lUGmk311fZQoaAZHQG8qavA44qBoB03oA2gIR0CxAQM7yQPqdX2UKGgGR0BjdPwNLDhtaAdN6ANoCEdAsQKYBOpKjHV9lChoBkdAcacmPo3aSWgHTegDaAhHQLEDnm2b5M11fZQoaAZHQDSomv4dp7FoB03oA2gIR0CxBYW3WnTBdX2UKGgGR0BZczfBN21VaAdNZAFoCEdAsQb8hTwUg3V9lChoBkdAbx7Kji4rjGgHTegDaAhHQLEJRNN8E3d1fZQoaAZHQGk8UD+zdDZoB01JA2gIR0CxCWgzch1UdX2UKGgGR0BkBkl5WzWxaAdN6ANoCEdAsQyTwqiGnHV9lChoBkdAUDXKYAsCk2gHTegDaAhHQLENt6jWTX91fZQoaAZHP9BV1fVqeshoB01dA2gIR0CxDw9SVGCqdX2UKGgGR8ASD1bqyGBXaAdN6ANoCEdAsRATq+rU9nV9lChoBkdAScjI91U2k2gHTSQCaAhHQLEQFYLb5/N1fZQoaAZHQGWNeYlY2bZoB03oA2gIR0CxFcyf16E8dX2UKGgGR0Bf/M7lq8DkaAdN6ANoCEdAsRcw9IPK+3V9lChoBkdAZCgpQ1rIo2gHTegDaAhHQLEYN3JxNqR1fZQoaAZHQHUgGAPNFBpoB03oA2gIR0CxGDlWfbsXdX2UKGgGR0BuMc2cawUyaAdN6ANoCEdAsRwu5tm+TXV9lChoBkdAUid9Brvb5GgHTdMCaAhHQLEcy31zySV1fZQoaAZHQGOFyXD3ueBoB03oA2gIR0CxHZHPZ7HAdX2UKGgGRz/cwcHWz4UOaAdLG2gIR0CxHb1a4c3mdX2UKGgGR0Ag+1og3cYZaAdNWQFoCEdAsR5mLCN0eXV9lChoBkdAV62N96Tnq2gHTegDaAhHQLEemWT5ftx1fZQoaAZHQGypCOvMbFVoB02bAmgIR0CxJBfr0J4TdX2UKGgGR0BD2JcgQpWnaAdN6ANoCEdAsST7Lq2SdXV9lChoBkdAaY7TAFgUlGgHTegDaAhHQLEl89SuQp51fZQoaAZHP+WNWEK3NLVoB0sUaAhHQLEmFGBWge11fZQoaAZHQGSrg6Mir1doB03oA2gIR0CxJswAZKnOdX2UKGgGR0BFp3ocJdB0aAdN6ANoCEdAsSr1Up/gBXV9lChoBkdAaR0A1ejVQWgHTegDaAhHQLEruKZDzAh1fZQoaAZHv+f1FH8TBZZoB0sUaAhHQLEr5nBLwnZ1fZQoaAZHQFC2HoHLRrtoB03oA2gIR0CxLNicslLOdX2UKGgGR0BvzAyoGY8daAdN6ANoCEdAsS2ZbxEv03V9lChoBkdAaSZ5O8Cgb2gHTegDaAhHQLEy+6xPfsN1fZQoaAZHwEWulSCOFQFoB03oA2gIR0CxNAuhoM8YdX2UKGgGR0BjpEVUMoc8aAdN6ANoCEdAsTUjSro4dnV9lChoBkdAZjBf51vETGgHTegDaAhHQLE14oZAIIF1fZQoaAZHQGakL0J4SpRoB03oA2gIR0CxOg9f1HvudX2UKGgGR0BYuiV0Lc9GaAdN6ANoCEdAsTrFYU34sXV9lChoBkdAWgsKIBRyfmgHTegDaAhHQLE7uzRx95R1fZQoaAZHQHGjiteUpuxoB03oA2gIR0CxPHibtqpMdX2UKGgGR0BB60SIxgy/aAdLkGgIR0CxPXKPCEYgdX2UKGgGR0Bo7j0xubZwaAdN6ANoCEdAsUG9MZgogHV9lChoBkdAZ6A5o4+8oWgHTegDaAhHQLFCzSlFc6h1fZQoaAZHQGQYTEzfrKNoB03oA2gIR0CxRA5VbRnfdX2UKGgGR0AwJgLZzxPPaAdN6ANoCEdAsUW6E384xXV9lChoBkdAY46WJJoTPGgHTegDaAhHQLFI6Sidrft1fZQoaAZHQGTqMFdLQHBoB03oA2gIR0CxSZCeI2wWdX2UKGgGR0Avd5ckdFOPaAdL6WgIR0CxSl4lQdjodX2UKGgGR0B04NqYZ2pyaAdN6ANoCEdAsUqG8M/hVHV9lChoBke/uVWS2Yv38GgHSxRoCEdAsUqzSjQAuXV9lChoBkfASxuOQyRB/2gHS9xoCEdAsUsv0aqCH3V9lChoBkdAQmYhwEQoTmgHTegDaAhHQLFMcjBVMmF1fZQoaAZHQGKMUqpcX3xoB02VA2gIR0CxUeCdOIqLdX2UKGgGR0Bk+naWX1J2aAdN6ANoCEdAsVMSEi+tbXV9lChoBkdAbwidzXBgu2gHTegDaAhHQLFTbu63AmB1fZQoaAZHQERNk5p8F6loB0ueaAhHQLFUFcbiqAB1fZQoaAZHQFVvxFAmiQFoB03oA2gIR0CxVJavJRwZdX2UKGgGR8AywmrKeTV2aAdL0WgIR0CxVWp1V5rydX2UKGgGR8AxCJq7AckuaAdNZQFoCEdAsVbXkFOfunV9lChoBkdAVZeqMm4RVmgHTekCaAhHQLFXBy4Wk8B1fZQoaAZHQDdohq0tyxRoB019AWgIR0CxWU64Ds+ndX2UKGgGR0BlcquZCv5haAdN6ANoCEdAsVnYOPNmlXV9lChoBkdAUkExREWqLmgHTVUBaAhHQLFbiJtBOYZ1fZQoaAZHwBcOVLSNOudoB03oA2gIR0CxW9xxLkCFdX2UKGgGR8ALSmKqGUOeaAdLFGgIR0CxW/z+aScLdX2UKGgGR0BEYtygf2boaAdN6ANoCEdAsV28/8l5W3V9lChoBkdAXGJme18b72gHTegDaAhHQLFh71dgOSZ1fZQoaAZHP+DRYRujynVoB0sUaAhHQLFiH6J66at1fZQoaAZHQGiOeF10T11oB00zAmgIR0CxYujKLbYcdX2UKGgGR0BvGW07bL2YaAdN6ANoCEdAsWO+/L1VYXV9lChoBkdAbjsLux8lX2gHTegDaAhHQLFkMosZpBZ1fZQoaAZHv8XffoA4n4RoB0sVaAhHQLFkVfpUxVR1fZQoaAZHQGNnomois4loB03oA2gIR0CxaKbzK9wndX2UKGgGR0BiTAI8hcJMaAdN6ANoCEdAsWlgQd0aInV9lChoBkdAZCpFERaouWgHTegDaAhHQLFqguy/sVt1fZQoaAZHQGeAVjiGWUtoB03oA2gIR0Cxay4bsF+vdX2UKGgGR0Bga/PiT+vRaAdN6ANoCEdAsXEI2Kl54XV9lChoBkdAX9k+zMRpUWgHTegDaAhHQLFx/Zwn6VN1fZQoaAZHQHAgd+b3Gn5oB03oA2gIR0CxctZBsyi3dX2UKGgGR0B0dpRLsa86aAdN6ANoCEdAsXNwLgGbC3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.5, "vf_coef": 0.0, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}