--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: llama-3-8b-claudstruct-v3 results: [] datasets: - Norquinal/claude_multi_instruct_30k language: - en --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: true strict: false chat_template: llama3 datasets: - path: Norquinal/claude_multi_instruct_30k type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/llama-3-8b-claudstruct-v3/ adapter: qlora lora_model_dir: sequence_len: 512 sample_packing: false pad_to_sequence_len: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 8 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> ```

# llama-3-8b-claudstruct-v3 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [Norquinal/claude_multi_instruct_30k](https://huggingface.co/datasets/Norquinal/claude_multi_instruct_30k) dataset. It achieves the following results on the evaluation set: - Loss: 1.6226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2209 | 0.0007 | 1 | 2.0399 | | 1.7842 | 0.2502 | 341 | 1.6960 | | 1.6914 | 0.5004 | 682 | 1.6590 | | 1.6757 | 0.7506 | 1023 | 1.6414 | | 1.5182 | 1.0007 | 1364 | 1.6319 | | 1.8421 | 1.2509 | 1705 | 1.6264 | | 1.7271 | 1.5011 | 2046 | 1.6237 | | 1.4817 | 1.7513 | 2387 | 1.6226 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1