--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bpeo_classifier results: [] --- # bpeo_classifier This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4615 - Accuracy: 0.8522 - F1: 0.8506 - Precision: 0.8536 - Recall: 0.8522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 164 | 0.4292 | 0.8247 | 0.8266 | 0.8292 | 0.8247 | | No log | 2.0 | 328 | 0.4365 | 0.8351 | 0.8314 | 0.8334 | 0.8351 | | No log | 3.0 | 492 | 0.4568 | 0.8385 | 0.8395 | 0.8416 | 0.8385 | | 0.2652 | 4.0 | 656 | 0.4615 | 0.8522 | 0.8506 | 0.8536 | 0.8522 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3