--- language: - en - es base_model: onnx-community/yolov10b --- # Counter Strike 2 players detector ### Supported Labels [ "none", "ct_body", "ct_head", "t_body", "t_head" ] ### models YOLOv10b ## How to use ``` from ultralytics import YOLO # Load a pretrained YOLO model model = YOLO(r'weights\yolov10b_cs2.pt') # Run inference on 'image.png' with arguments model.predict( 'image.png', save=True, device=0 ) ``` # Labels ![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/C8USpCXU6KN8VQ2vjub_Q.jpeg) # Results ![results.png](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/X9ZL01yd9UIo-u4sYnHN8.png) # Predict ![train_batch0.jpg](https://cdn-uploads.huggingface.co/production/uploads/62e1c9b42e4cab6e39dafc97/gZQHxDe4hYYw8oz3NgNnv.jpeg) ``` YOLOv10b summary (fused): 383 layers, 20,418,862 parameters, 0 gradients, 98.0 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.44it/s] all 90 215 0.908 0.757 0.85 0.635 ct_body 41 45 0.914 0.911 0.953 0.819 ct_head 43 47 0.909 0.639 0.735 0.465 t_body 54 60 0.932 0.921 0.964 0.781 t_head 56 63 0.877 0.556 0.748 0.476 ``` # others models YOLOv10s https://huggingface.co/ChitoParedes/cs2-yolov10s