jovisaib commited on
Commit
1c7e95c
·
1 Parent(s): 5ae1654

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.27 +/- 1.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7374f64afae713ab7628f7ff4172f2ac01da6a8c0b71963690779dc2a23b80c
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f958a47eca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f958a47a6f0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1678284029363445366,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALEelv8hkVb+kGqy/sKWXPzxYG7/WoNO/QGCPP86+yL9bXl0/VOoLPmgAob+WwMA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]]",
60
+ "desired_goal": "[[-1.2912345 -0.83356905 -1.344563 ]\n [ 1.1847439 -0.6068151 -1.6533458 ]\n [ 1.1201248 -1.5683229 0.864721 ]\n [ 0.13663608 -1.2578249 0.09411733]]",
61
+ "observation": "[[ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa2yRPcsZEb5oAAY9R048vaCv7D3YKoc+jPLyvFh6FT7BKCY+JpELPfy8UT10JwI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07100757 -0.14169995 0.03271523]\n [-0.04597309 0.11556935 0.26399875]\n [-0.02965667 0.14597452 0.16226484]\n [ 0.03407397 0.05120562 0.12710363]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlIRE2sYPFMCUhpRSlIwBbJRLMowBdJRHQKh1gkLQXyl1fZQoaAZoCWgPQwh/Tdaoh+j9v5SGlFKUaBVLMmgWR0CodUNliBoVdX2UKGgGaAloD0MIS+SCM/jbGMCUhpRSlGgVSzJoFkdAqHUD1dxAB3V9lChoBmgJaA9DCB0fLc4Y5gDAlIaUUpRoFUsyaBZHQKh0wqlP8AJ1fZQoaAZoCWgPQwhGmKJcGt8IwJSGlFKUaBVLMmgWR0Codnmkep4sdX2UKGgGaAloD0MIbtqM0xCFE8CUhpRSlGgVSzJoFkdAqHY7EcbR4XV9lChoBmgJaA9DCI0JMZdUrfC/lIaUUpRoFUsyaBZHQKh1+03Ov+x1fZQoaAZoCWgPQwhOtKuQ8nMIwJSGlFKUaBVLMmgWR0CodboF/x2CdX2UKGgGaAloD0MInUmbqnuk/7+UhpRSlGgVSzJoFkdAqHdvy7PIGXV9lChoBmgJaA9DCPDBa5c2HAXAlIaUUpRoFUsyaBZHQKh3MRNATqV1fZQoaAZoCWgPQwieRe9UwD0JwJSGlFKUaBVLMmgWR0CodvFDOTq0dX2UKGgGaAloD0MIYi6p2m7C/b+UhpRSlGgVSzJoFkdAqHav557gKnV9lChoBmgJaA9DCHpQUIpWbgzAlIaUUpRoFUsyaBZHQKh4ag/Tspp1fZQoaAZoCWgPQwhU/Urnw/MCwJSGlFKUaBVLMmgWR0CoeCtr0rbydX2UKGgGaAloD0MIFFlrKLVXBcCUhpRSlGgVSzJoFkdAqHfrzPKMenV9lChoBmgJaA9DCKLSiJl9PhDAlIaUUpRoFUsyaBZHQKh3qn8baRJ1fZQoaAZoCWgPQwgK2uTwSSf8v5SGlFKUaBVLMmgWR0CoeWahQFcIdX2UKGgGaAloD0MIu0bLgR6q97+UhpRSlGgVSzJoFkdAqHkoAOrhi3V9lChoBmgJaA9DCD4ipkQSvfe/lIaUUpRoFUsyaBZHQKh46GO+7Dl1fZQoaAZoCWgPQwhF1hpK7SUGwJSGlFKUaBVLMmgWR0CoeKb+cYqHdX2UKGgGaAloD0MIgEbp0r/EA8CUhpRSlGgVSzJoFkdAqHpfV09yLnV9lChoBmgJaA9DCMjrwaT4eArAlIaUUpRoFUsyaBZHQKh6IH1vl2h1fZQoaAZoCWgPQwh55uWw+w75v5SGlFKUaBVLMmgWR0CoeeFqagEmdX2UKGgGaAloD0MIw3+6gQLv/b+UhpRSlGgVSzJoFkdAqHmf/rB0p3V9lChoBmgJaA9DCNegL739efy/lIaUUpRoFUsyaBZHQKh7YVARkEt1fZQoaAZoCWgPQwj5hy09mooIwJSGlFKUaBVLMmgWR0CoeyKQJXyRdX2UKGgGaAloD0MIA9L+B1hrB8CUhpRSlGgVSzJoFkdAqHri9EkSmXV9lChoBmgJaA9DCOtTjsnifgXAlIaUUpRoFUsyaBZHQKh6oYVIqb11fZQoaAZoCWgPQwgRxk/j3pwOwJSGlFKUaBVLMmgWR0CofG/hddE9dX2UKGgGaAloD0MIVd0jm6tmBsCUhpRSlGgVSzJoFkdAqHwxZU1hs3V9lChoBmgJaA9DCJ/Nqs/V9gLAlIaUUpRoFUsyaBZHQKh78eGwiaB1fZQoaAZoCWgPQwg08nnFU+8WwJSGlFKUaBVLMmgWR0Coe7Cu+yqudX2UKGgGaAloD0MIkZp2Mc0UDsCUhpRSlGgVSzJoFkdAqH1na+N96XV9lChoBmgJaA9DCNdOlIREihDAlIaUUpRoFUsyaBZHQKh9KJrLyMF1fZQoaAZoCWgPQwi5Fi1A28oDwJSGlFKUaBVLMmgWR0CofOjqv/zbdX2UKGgGaAloD0MI5bUSukuiBcCUhpRSlGgVSzJoFkdAqHyngLqlg3V9lChoBmgJaA9DCJSFr6916fe/lIaUUpRoFUsyaBZHQKh+XVRUFSt1fZQoaAZoCWgPQwhQGJRpNDkBwJSGlFKUaBVLMmgWR0Cofh6bWmP6dX2UKGgGaAloD0MIh6QWSianC8CUhpRSlGgVSzJoFkdAqH3fCO3lS3V9lChoBmgJaA9DCFt4Xio2Bg3AlIaUUpRoFUsyaBZHQKh9nbGm1pl1fZQoaAZoCWgPQwgnE7cKYnAZwJSGlFKUaBVLMmgWR0Cof/YpDu0DdX2UKGgGaAloD0MIy2d5HtwdF8CUhpRSlGgVSzJoFkdAqH+4Vfu1GHV9lChoBmgJaA9DCDwtP3CV5wvAlIaUUpRoFUsyaBZHQKh/eVKwpvx1fZQoaAZoCWgPQwjC3Vm77cIJwJSGlFKUaBVLMmgWR0CofzixmkFfdX2UKGgGaAloD0MIdCfYf53rFMCUhpRSlGgVSzJoFkdAqIGNUp/gBXV9lChoBmgJaA9DCEuxo3GonwHAlIaUUpRoFUsyaBZHQKiBTzq8lHB1fZQoaAZoCWgPQwgmUprN49AAwJSGlFKUaBVLMmgWR0CogRAYP5HmdX2UKGgGaAloD0MIakyIuaSKCcCUhpRSlGgVSzJoFkdAqIDPP9kz43V9lChoBmgJaA9DCDC8kuS5nhHAlIaUUpRoFUsyaBZHQKiDJ1mJ3xF1fZQoaAZoCWgPQwhU4jrGFccRwJSGlFKUaBVLMmgWR0CogumHxjJ/dX2UKGgGaAloD0MIf2lRn+RuBMCUhpRSlGgVSzJoFkdAqIKqjDbaiHV9lChoBmgJaA9DCLrZHyi3jQ7AlIaUUpRoFUsyaBZHQKiCafV7QcB1fZQoaAZoCWgPQwi1VN6OcJr/v5SGlFKUaBVLMmgWR0CohLN34bjtdX2UKGgGaAloD0MIHY6u0t2VAcCUhpRSlGgVSzJoFkdAqIR1SjxkNHV9lChoBmgJaA9DCDtvY7MjFQvAlIaUUpRoFUsyaBZHQKiENj2i+L51fZQoaAZoCWgPQwhlNPJ5xRP+v5SGlFKUaBVLMmgWR0Cog/WOAAhjdX2UKGgGaAloD0MIvf25aMj46L+UhpRSlGgVSzJoFkdAqIZD2OAAhnV9lChoBmgJaA9DCIE//Pz3ABHAlIaUUpRoFUsyaBZHQKiGBcpLEk11fZQoaAZoCWgPQwgHCObo8XsNwJSGlFKUaBVLMmgWR0CohcaqKgqWdX2UKGgGaAloD0MIIk+Srpn8B8CUhpRSlGgVSzJoFkdAqIWFtj0+T3V9lChoBmgJaA9DCBrBxvXvihnAlIaUUpRoFUsyaBZHQKiH1rQgLZ11fZQoaAZoCWgPQwh0YDlCBtIMwJSGlFKUaBVLMmgWR0Coh5iW/rSmdX2UKGgGaAloD0MI0H05s10hCMCUhpRSlGgVSzJoFkdAqIdZgAp8W3V9lChoBmgJaA9DCHb8FwgCBATAlIaUUpRoFUsyaBZHQKiHGL8aXKN1fZQoaAZoCWgPQwgaahSSzGr/v5SGlFKUaBVLMmgWR0CoiVbvXsgMdX2UKGgGaAloD0MIkluTbkvkDsCUhpRSlGgVSzJoFkdAqIkYQ8OkL3V9lChoBmgJaA9DCPncCfZfZw3AlIaUUpRoFUsyaBZHQKiI2H8CPp91fZQoaAZoCWgPQwge+YOB514JwJSGlFKUaBVLMmgWR0CoiJccU/OddX2UKGgGaAloD0MIQ1ciUP3jA8CUhpRSlGgVSzJoFkdAqIpOB6KLsXV9lChoBmgJaA9DCNY3MLlRBArAlIaUUpRoFUsyaBZHQKiKD0VafSR1fZQoaAZoCWgPQwihaB7AIh8KwJSGlFKUaBVLMmgWR0Coic+O4oZydX2UKGgGaAloD0MIQtKnVfQHCsCUhpRSlGgVSzJoFkdAqImOVxCIDnV9lChoBmgJaA9DCE3cKoiBLv+/lIaUUpRoFUsyaBZHQKiLTZfUnXx1fZQoaAZoCWgPQwhjsyPVdw4SwJSGlFKUaBVLMmgWR0Coiw7bDdgwdX2UKGgGaAloD0MIpS+EnPf/9L+UhpRSlGgVSzJoFkdAqIrPGVAzHnV9lChoBmgJaA9DCKr0E85u7fe/lIaUUpRoFUsyaBZHQKiKjZwGW2R1fZQoaAZoCWgPQwgpIVhVL3/wv5SGlFKUaBVLMmgWR0CojEzeGfwrdX2UKGgGaAloD0MIO/vKg/SkEMCUhpRSlGgVSzJoFkdAqIwOHerMknV9lChoBmgJaA9DCGr3qwDfbf6/lIaUUpRoFUsyaBZHQKiLzm3fAKx1fZQoaAZoCWgPQwjrbp7qkFvzv5SGlFKUaBVLMmgWR0Coi40pVjqfdX2UKGgGaAloD0MI3GPpQxfkEMCUhpRSlGgVSzJoFkdAqI1BQSBbwHV9lChoBmgJaA9DCFsHB3sT4wHAlIaUUpRoFUsyaBZHQKiNAnMMZxd1fZQoaAZoCWgPQwjv5qkOuXkBwJSGlFKUaBVLMmgWR0CojMKyWzF/dX2UKGgGaAloD0MI5DJuaqCZAMCUhpRSlGgVSzJoFkdAqIyBRwZOz3V9lChoBmgJaA9DCO+oMSHmsgbAlIaUUpRoFUsyaBZHQKiOM81XNkh1fZQoaAZoCWgPQwgBMJ5BQ//3v5SGlFKUaBVLMmgWR0CojfUDdP+GdX2UKGgGaAloD0MIH9rHCn77E8CUhpRSlGgVSzJoFkdAqI21afSQYHV9lChoBmgJaA9DCJ9x4UBIdhDAlIaUUpRoFUsyaBZHQKiNdAKv3al1fZQoaAZoCWgPQwjHKTqSy/8JwJSGlFKUaBVLMmgWR0CojzpOWSlndX2UKGgGaAloD0MIwakPJO9c/7+UhpRSlGgVSzJoFkdAqI77myPdVXV9lChoBmgJaA9DCOgSDr3FYwvAlIaUUpRoFUsyaBZHQKiOu+mm+Cd1fZQoaAZoCWgPQwhAUdmwptIBwJSGlFKUaBVLMmgWR0CojnqsdT5wdX2UKGgGaAloD0MIGw+22O1zEMCUhpRSlGgVSzJoFkdAqJAmJ79hqnV9lChoBmgJaA9DCDduMT83lAjAlIaUUpRoFUsyaBZHQKiP51ZDArR1fZQoaAZoCWgPQwinP/uRIqITwJSGlFKUaBVLMmgWR0Coj6eqR2bHdX2UKGgGaAloD0MIt0JYjSV8E8CUhpRSlGgVSzJoFkdAqI9ml/H5rXV9lChoBmgJaA9DCH1bsFQXMAzAlIaUUpRoFUsyaBZHQKiRGn62v0R1fZQoaAZoCWgPQwj6m1CIgCMFwJSGlFKUaBVLMmgWR0CokNvVNHpbdX2UKGgGaAloD0MIrrzkf/JXB8CUhpRSlGgVSzJoFkdAqJCcSbpeNXV9lChoBmgJaA9DCBaiQ+BIAAPAlIaUUpRoFUsyaBZHQKiQWuIyj591ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:395c74d2d06947a9df7723a6e5596d626077cf0993b406605716e6a51a9884d1
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:768cb682300903b311c391778aacbc4e96707e256092e72c8a60417d887fc9b4
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f958a47eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f958a47a6f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678284029363445366, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+vIe6Pp1uTry8/Ps+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALEelv8hkVb+kGqy/sKWXPzxYG7/WoNO/QGCPP86+yL9bXl0/VOoLPmgAob+WwMA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALu8h7o+nW5OvLz8+z7/L987+Ypju/UJALuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]\n [ 0.36431682 -0.01259961 0.4921626 ]]", "desired_goal": "[[-1.2912345 -0.83356905 -1.344563 ]\n [ 1.1847439 -0.6068151 -1.6533458 ]\n [ 1.1201248 -1.5683229 0.864721 ]\n [ 0.13663608 -1.2578249 0.09411733]]", "observation": "[[ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]\n [ 0.36431682 -0.01259961 0.4921626 0.00681114 -0.00347203 -0.00195372]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa2yRPcsZEb5oAAY9R048vaCv7D3YKoc+jPLyvFh6FT7BKCY+JpELPfy8UT10JwI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07100757 -0.14169995 0.03271523]\n [-0.04597309 0.11556935 0.26399875]\n [-0.02965667 0.14597452 0.16226484]\n [ 0.03407397 0.05120562 0.12710363]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlIRE2sYPFMCUhpRSlIwBbJRLMowBdJRHQKh1gkLQXyl1fZQoaAZoCWgPQwh/Tdaoh+j9v5SGlFKUaBVLMmgWR0CodUNliBoVdX2UKGgGaAloD0MIS+SCM/jbGMCUhpRSlGgVSzJoFkdAqHUD1dxAB3V9lChoBmgJaA9DCB0fLc4Y5gDAlIaUUpRoFUsyaBZHQKh0wqlP8AJ1fZQoaAZoCWgPQwhGmKJcGt8IwJSGlFKUaBVLMmgWR0Codnmkep4sdX2UKGgGaAloD0MIbtqM0xCFE8CUhpRSlGgVSzJoFkdAqHY7EcbR4XV9lChoBmgJaA9DCI0JMZdUrfC/lIaUUpRoFUsyaBZHQKh1+03Ov+x1fZQoaAZoCWgPQwhOtKuQ8nMIwJSGlFKUaBVLMmgWR0CodboF/x2CdX2UKGgGaAloD0MInUmbqnuk/7+UhpRSlGgVSzJoFkdAqHdvy7PIGXV9lChoBmgJaA9DCPDBa5c2HAXAlIaUUpRoFUsyaBZHQKh3MRNATqV1fZQoaAZoCWgPQwieRe9UwD0JwJSGlFKUaBVLMmgWR0CodvFDOTq0dX2UKGgGaAloD0MIYi6p2m7C/b+UhpRSlGgVSzJoFkdAqHav557gKnV9lChoBmgJaA9DCHpQUIpWbgzAlIaUUpRoFUsyaBZHQKh4ag/Tspp1fZQoaAZoCWgPQwhU/Urnw/MCwJSGlFKUaBVLMmgWR0CoeCtr0rbydX2UKGgGaAloD0MIFFlrKLVXBcCUhpRSlGgVSzJoFkdAqHfrzPKMenV9lChoBmgJaA9DCKLSiJl9PhDAlIaUUpRoFUsyaBZHQKh3qn8baRJ1fZQoaAZoCWgPQwgK2uTwSSf8v5SGlFKUaBVLMmgWR0CoeWahQFcIdX2UKGgGaAloD0MIu0bLgR6q97+UhpRSlGgVSzJoFkdAqHkoAOrhi3V9lChoBmgJaA9DCD4ipkQSvfe/lIaUUpRoFUsyaBZHQKh46GO+7Dl1fZQoaAZoCWgPQwhF1hpK7SUGwJSGlFKUaBVLMmgWR0CoeKb+cYqHdX2UKGgGaAloD0MIgEbp0r/EA8CUhpRSlGgVSzJoFkdAqHpfV09yLnV9lChoBmgJaA9DCMjrwaT4eArAlIaUUpRoFUsyaBZHQKh6IH1vl2h1fZQoaAZoCWgPQwh55uWw+w75v5SGlFKUaBVLMmgWR0CoeeFqagEmdX2UKGgGaAloD0MIw3+6gQLv/b+UhpRSlGgVSzJoFkdAqHmf/rB0p3V9lChoBmgJaA9DCNegL739efy/lIaUUpRoFUsyaBZHQKh7YVARkEt1fZQoaAZoCWgPQwj5hy09mooIwJSGlFKUaBVLMmgWR0CoeyKQJXyRdX2UKGgGaAloD0MIA9L+B1hrB8CUhpRSlGgVSzJoFkdAqHri9EkSmXV9lChoBmgJaA9DCOtTjsnifgXAlIaUUpRoFUsyaBZHQKh6oYVIqb11fZQoaAZoCWgPQwgRxk/j3pwOwJSGlFKUaBVLMmgWR0CofG/hddE9dX2UKGgGaAloD0MIVd0jm6tmBsCUhpRSlGgVSzJoFkdAqHwxZU1hs3V9lChoBmgJaA9DCJ/Nqs/V9gLAlIaUUpRoFUsyaBZHQKh78eGwiaB1fZQoaAZoCWgPQwg08nnFU+8WwJSGlFKUaBVLMmgWR0Coe7Cu+yqudX2UKGgGaAloD0MIkZp2Mc0UDsCUhpRSlGgVSzJoFkdAqH1na+N96XV9lChoBmgJaA9DCNdOlIREihDAlIaUUpRoFUsyaBZHQKh9KJrLyMF1fZQoaAZoCWgPQwi5Fi1A28oDwJSGlFKUaBVLMmgWR0CofOjqv/zbdX2UKGgGaAloD0MI5bUSukuiBcCUhpRSlGgVSzJoFkdAqHyngLqlg3V9lChoBmgJaA9DCJSFr6916fe/lIaUUpRoFUsyaBZHQKh+XVRUFSt1fZQoaAZoCWgPQwhQGJRpNDkBwJSGlFKUaBVLMmgWR0Cofh6bWmP6dX2UKGgGaAloD0MIh6QWSianC8CUhpRSlGgVSzJoFkdAqH3fCO3lS3V9lChoBmgJaA9DCFt4Xio2Bg3AlIaUUpRoFUsyaBZHQKh9nbGm1pl1fZQoaAZoCWgPQwgnE7cKYnAZwJSGlFKUaBVLMmgWR0Cof/YpDu0DdX2UKGgGaAloD0MIy2d5HtwdF8CUhpRSlGgVSzJoFkdAqH+4Vfu1GHV9lChoBmgJaA9DCDwtP3CV5wvAlIaUUpRoFUsyaBZHQKh/eVKwpvx1fZQoaAZoCWgPQwjC3Vm77cIJwJSGlFKUaBVLMmgWR0CofzixmkFfdX2UKGgGaAloD0MIdCfYf53rFMCUhpRSlGgVSzJoFkdAqIGNUp/gBXV9lChoBmgJaA9DCEuxo3GonwHAlIaUUpRoFUsyaBZHQKiBTzq8lHB1fZQoaAZoCWgPQwgmUprN49AAwJSGlFKUaBVLMmgWR0CogRAYP5HmdX2UKGgGaAloD0MIakyIuaSKCcCUhpRSlGgVSzJoFkdAqIDPP9kz43V9lChoBmgJaA9DCDC8kuS5nhHAlIaUUpRoFUsyaBZHQKiDJ1mJ3xF1fZQoaAZoCWgPQwhU4jrGFccRwJSGlFKUaBVLMmgWR0CogumHxjJ/dX2UKGgGaAloD0MIf2lRn+RuBMCUhpRSlGgVSzJoFkdAqIKqjDbaiHV9lChoBmgJaA9DCLrZHyi3jQ7AlIaUUpRoFUsyaBZHQKiCafV7QcB1fZQoaAZoCWgPQwi1VN6OcJr/v5SGlFKUaBVLMmgWR0CohLN34bjtdX2UKGgGaAloD0MIHY6u0t2VAcCUhpRSlGgVSzJoFkdAqIR1SjxkNHV9lChoBmgJaA9DCDtvY7MjFQvAlIaUUpRoFUsyaBZHQKiENj2i+L51fZQoaAZoCWgPQwhlNPJ5xRP+v5SGlFKUaBVLMmgWR0Cog/WOAAhjdX2UKGgGaAloD0MIvf25aMj46L+UhpRSlGgVSzJoFkdAqIZD2OAAhnV9lChoBmgJaA9DCIE//Pz3ABHAlIaUUpRoFUsyaBZHQKiGBcpLEk11fZQoaAZoCWgPQwgHCObo8XsNwJSGlFKUaBVLMmgWR0CohcaqKgqWdX2UKGgGaAloD0MIIk+Srpn8B8CUhpRSlGgVSzJoFkdAqIWFtj0+T3V9lChoBmgJaA9DCBrBxvXvihnAlIaUUpRoFUsyaBZHQKiH1rQgLZ11fZQoaAZoCWgPQwh0YDlCBtIMwJSGlFKUaBVLMmgWR0Coh5iW/rSmdX2UKGgGaAloD0MI0H05s10hCMCUhpRSlGgVSzJoFkdAqIdZgAp8W3V9lChoBmgJaA9DCHb8FwgCBATAlIaUUpRoFUsyaBZHQKiHGL8aXKN1fZQoaAZoCWgPQwgaahSSzGr/v5SGlFKUaBVLMmgWR0CoiVbvXsgMdX2UKGgGaAloD0MIkluTbkvkDsCUhpRSlGgVSzJoFkdAqIkYQ8OkL3V9lChoBmgJaA9DCPncCfZfZw3AlIaUUpRoFUsyaBZHQKiI2H8CPp91fZQoaAZoCWgPQwge+YOB514JwJSGlFKUaBVLMmgWR0CoiJccU/OddX2UKGgGaAloD0MIQ1ciUP3jA8CUhpRSlGgVSzJoFkdAqIpOB6KLsXV9lChoBmgJaA9DCNY3MLlRBArAlIaUUpRoFUsyaBZHQKiKD0VafSR1fZQoaAZoCWgPQwihaB7AIh8KwJSGlFKUaBVLMmgWR0Coic+O4oZydX2UKGgGaAloD0MIQtKnVfQHCsCUhpRSlGgVSzJoFkdAqImOVxCIDnV9lChoBmgJaA9DCE3cKoiBLv+/lIaUUpRoFUsyaBZHQKiLTZfUnXx1fZQoaAZoCWgPQwhjsyPVdw4SwJSGlFKUaBVLMmgWR0Coiw7bDdgwdX2UKGgGaAloD0MIpS+EnPf/9L+UhpRSlGgVSzJoFkdAqIrPGVAzHnV9lChoBmgJaA9DCKr0E85u7fe/lIaUUpRoFUsyaBZHQKiKjZwGW2R1fZQoaAZoCWgPQwgpIVhVL3/wv5SGlFKUaBVLMmgWR0CojEzeGfwrdX2UKGgGaAloD0MIO/vKg/SkEMCUhpRSlGgVSzJoFkdAqIwOHerMknV9lChoBmgJaA9DCGr3qwDfbf6/lIaUUpRoFUsyaBZHQKiLzm3fAKx1fZQoaAZoCWgPQwjrbp7qkFvzv5SGlFKUaBVLMmgWR0Coi40pVjqfdX2UKGgGaAloD0MI3GPpQxfkEMCUhpRSlGgVSzJoFkdAqI1BQSBbwHV9lChoBmgJaA9DCFsHB3sT4wHAlIaUUpRoFUsyaBZHQKiNAnMMZxd1fZQoaAZoCWgPQwjv5qkOuXkBwJSGlFKUaBVLMmgWR0CojMKyWzF/dX2UKGgGaAloD0MI5DJuaqCZAMCUhpRSlGgVSzJoFkdAqIyBRwZOz3V9lChoBmgJaA9DCO+oMSHmsgbAlIaUUpRoFUsyaBZHQKiOM81XNkh1fZQoaAZoCWgPQwgBMJ5BQ//3v5SGlFKUaBVLMmgWR0CojfUDdP+GdX2UKGgGaAloD0MIH9rHCn77E8CUhpRSlGgVSzJoFkdAqI21afSQYHV9lChoBmgJaA9DCJ9x4UBIdhDAlIaUUpRoFUsyaBZHQKiNdAKv3al1fZQoaAZoCWgPQwjHKTqSy/8JwJSGlFKUaBVLMmgWR0CojzpOWSlndX2UKGgGaAloD0MIwakPJO9c/7+UhpRSlGgVSzJoFkdAqI77myPdVXV9lChoBmgJaA9DCOgSDr3FYwvAlIaUUpRoFUsyaBZHQKiOu+mm+Cd1fZQoaAZoCWgPQwhAUdmwptIBwJSGlFKUaBVLMmgWR0CojnqsdT5wdX2UKGgGaAloD0MIGw+22O1zEMCUhpRSlGgVSzJoFkdAqJAmJ79hqnV9lChoBmgJaA9DCDduMT83lAjAlIaUUpRoFUsyaBZHQKiP51ZDArR1fZQoaAZoCWgPQwinP/uRIqITwJSGlFKUaBVLMmgWR0Coj6eqR2bHdX2UKGgGaAloD0MIt0JYjSV8E8CUhpRSlGgVSzJoFkdAqI9ml/H5rXV9lChoBmgJaA9DCH1bsFQXMAzAlIaUUpRoFUsyaBZHQKiRGn62v0R1fZQoaAZoCWgPQwj6m1CIgCMFwJSGlFKUaBVLMmgWR0CokNvVNHpbdX2UKGgGaAloD0MIrrzkf/JXB8CUhpRSlGgVSzJoFkdAqJCcSbpeNXV9lChoBmgJaA9DCBaiQ+BIAAPAlIaUUpRoFUsyaBZHQKiQWuIyj591ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (727 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.2721708934754132, "std_reward": 1.017870945138878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T15:09:47.782907"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4542f271256e4d5d602d3670828dd3445389b5f4c30d6d2274d9f989e88100ba
3
+ size 3056