--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:200 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”, “highest”), such as "Confidence: 60% / Medium". Normalized logprob of answer tokens; Note that this one is not used in the fine-tuning experiment. Logprob of an indirect "True/False" token after the raw answer. Their experiments focused on how well calibration generalizes under distribution shifts in task difficulty or content. Each fine-tuning datapoint is a question, the model’s answer (possibly incorrect), and a calibrated confidence. Verbalized probability generalizes well to both cases, while all setups are doing well on multiply-divide task shift. Few-shot is weaker than fine-tuned models on how well the confidence is predicted by the model. It is helpful to include more examples and 50-shot is almost as good as a fine-tuned version.' sentences: - What is the relationship between the calibration of AI models and the effectiveness of verbalized probabilities when applied to tasks of varying difficulty levels? - In what ways does the F1 @ K metric contribute to evaluating the factual accuracy and comprehensiveness of outputs generated by long-form language models? - What impact does the implementation of a pretrained query-document relevance model have on the process of document selection in research methodologies? - source_sentence: 'Fig. 4. Overview of SAFE for factuality evaluation of long-form LLM generation. (Image source: Wei et al. 2024) The SAFE evaluation metric is F1 @ K. The motivation is that model response for long-form factuality should ideally hit both precision and recall, as the response should be both factual : measured by precision, the percentage of supported facts among all facts in the entire response. long : measured by recall, the percentage of provided facts among all relevant facts that should appear in the response. Therefore we want to consider the number of supported facts up to $K$. Given the model response $y$, the metric F1 @ K is defined as:' sentences: - What methodologies does the agreement model employ to identify discrepancies between the original and revised text, and how do these methodologies impact the overall editing workflow? - In what ways does the SAFE evaluation metric achieve a harmonious equilibrium between precision and recall in the context of evaluating the factual accuracy of long-form outputs generated by large language models? - In what ways does the inherently adversarial structure of TruthfulQA inquiries facilitate the detection of prevalent fallacies in human cognitive processes, and what implications does this have for understanding the constraints of expansive language models? - source_sentence: 'Non-context LLM: Prompt LLM directly with True or False? without additional context. Retrieval→LLM: Prompt with $k$ related passages retrieved from the knowledge source as context. Nonparametric probability (NP)): Compute the average likelihood of tokens in the atomic fact by a masked LM and use that to make a prediction. Retrieval→LLM + NP: Ensemble of two methods. Some interesting observations on model hallucination behavior: Error rates are higher for rarer entities in the task of biography generation. Error rates are higher for facts mentioned later in the generation. Using retrieval to ground the model generation significantly helps reduce hallucination.' sentences: - In what ways does the Rethinking with Retrieval (RR) methodology leverage Chain-of-Thought (CoT) prompting to enhance the efficacy of external knowledge retrieval, and what implications does this have for the precision of predictive outcomes generated by models? - In what ways does the retrieval of related passages contribute to minimizing hallucinations in large language models, and what specific techniques can be employed to evaluate the impact of this approach? - What are the benefits of using retrieval methods in biography generation to minimize inaccuracies, especially when compared to traditional prompting techniques that lack context? - source_sentence: 'Yin et al. (2023) studies the concept of self-knowledge, referring to whether language models know what they know or don’t know. SelfAware, containing 1,032 unanswerable questions across five categories and 2,337 answerable questions. Unanswerable questions are sourced from online forums with human annotations while answerable questions are sourced from SQuAD, HotpotQA and TriviaQA based on text similarity with unanswerable questions. A question may be unanswerable due to various reasons, such as no scientific consensus, imaginations of the future, completely subjective, philosophical reasons that may yield multiple responses, etc. Considering separating answerable vs unanswerable questions as a binary classification task, we can measure F1-score or accuracy and the experiments showed that larger models can do better at this task.' sentences: - What is the relationship between model size and performance metrics, such as F1-score and accuracy, in the context of classifying questions into answerable and unanswerable categories? - How does the introduction of stochastic perturbations in synthetic training data contribute to the enhancement of editor model efficacy within LangChain frameworks? - How do the various output values linked to reflection tokens in the Self-RAG framework impact the generation process, and why are they important? - source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based on how likely the model outputs correct answers. (Image source: Gekhman et al. 2024) Some interesting observations of the experiments, where dev set accuracy is considered a proxy for hallucinations. Unknown examples are fitted substantially slower than Known. The best dev performance is obtained when the LLM fits the majority of the Known training examples but only a few of the Unknown ones. The model starts to hallucinate when it learns most of the Unknown examples. Among Known examples, MaybeKnown cases result in better overall performance, more essential than HighlyKnown ones.' sentences: - In what ways does the fitting speed of examples that are not previously encountered differ from that of familiar examples, and how does this variation influence the overall accuracy of the model on the development set? - What role do reflection tokens play in enhancing the efficiency of document retrieval and generation within the Self-RAG framework? - How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets? model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.8802083333333334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.96875 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.984375 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9947916666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8802083333333334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3229166666666667 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.196875 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09947916666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8802083333333334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.96875 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.984375 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9947916666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9433275174124347 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9261284722222224 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9264025950292397 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.8697916666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9739583333333334 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9739583333333334 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9947916666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8697916666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3246527777777778 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1947916666666666 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09947916666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8697916666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9739583333333334 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9739583333333334 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9947916666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.939968526552219 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9216269841269841 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9220610119047619 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.8697916666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9739583333333334 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.984375 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8697916666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3246527777777778 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.196875 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8697916666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9739583333333334 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.984375 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9419747509776967 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.922676917989418 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.922676917989418 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.8541666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9583333333333334 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.96875 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9947916666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8541666666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3194444444444445 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19374999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09947916666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8541666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9583333333333334 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.96875 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9947916666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9306358745697197 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9094328703703702 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9098668981481483 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.7916666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.953125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9739583333333334 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9895833333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7916666666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3177083333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1947916666666666 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09895833333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7916666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.953125 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9739583333333334 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9895833333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9003914274568845 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8705935846560847 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8713150853775854 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-200") # Run inference sentences = [ 'Fig. 1. Knowledge categorization of close-book QA examples based on how likely the model outputs correct answers. (Image source: Gekhman et al. 2024)\nSome interesting observations of the experiments, where dev set accuracy is considered a proxy for hallucinations.\n\nUnknown examples are fitted substantially slower than Known.\nThe best dev performance is obtained when the LLM fits the majority of the Known training examples but only a few of the Unknown ones. The model starts to hallucinate when it learns most of the Unknown examples.\nAmong Known examples, MaybeKnown cases result in better overall performance, more essential than HighlyKnown ones.', 'In what ways does the fitting speed of examples that are not previously encountered differ from that of familiar examples, and how does this variation influence the overall accuracy of the model on the development set?', 'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8802 | | cosine_accuracy@3 | 0.9688 | | cosine_accuracy@5 | 0.9844 | | cosine_accuracy@10 | 0.9948 | | cosine_precision@1 | 0.8802 | | cosine_precision@3 | 0.3229 | | cosine_precision@5 | 0.1969 | | cosine_precision@10 | 0.0995 | | cosine_recall@1 | 0.8802 | | cosine_recall@3 | 0.9688 | | cosine_recall@5 | 0.9844 | | cosine_recall@10 | 0.9948 | | cosine_ndcg@10 | 0.9433 | | cosine_mrr@10 | 0.9261 | | **cosine_map@100** | **0.9264** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8698 | | cosine_accuracy@3 | 0.974 | | cosine_accuracy@5 | 0.974 | | cosine_accuracy@10 | 0.9948 | | cosine_precision@1 | 0.8698 | | cosine_precision@3 | 0.3247 | | cosine_precision@5 | 0.1948 | | cosine_precision@10 | 0.0995 | | cosine_recall@1 | 0.8698 | | cosine_recall@3 | 0.974 | | cosine_recall@5 | 0.974 | | cosine_recall@10 | 0.9948 | | cosine_ndcg@10 | 0.94 | | cosine_mrr@10 | 0.9216 | | **cosine_map@100** | **0.9221** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8698 | | cosine_accuracy@3 | 0.974 | | cosine_accuracy@5 | 0.9844 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.8698 | | cosine_precision@3 | 0.3247 | | cosine_precision@5 | 0.1969 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.8698 | | cosine_recall@3 | 0.974 | | cosine_recall@5 | 0.9844 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.942 | | cosine_mrr@10 | 0.9227 | | **cosine_map@100** | **0.9227** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8542 | | cosine_accuracy@3 | 0.9583 | | cosine_accuracy@5 | 0.9688 | | cosine_accuracy@10 | 0.9948 | | cosine_precision@1 | 0.8542 | | cosine_precision@3 | 0.3194 | | cosine_precision@5 | 0.1937 | | cosine_precision@10 | 0.0995 | | cosine_recall@1 | 0.8542 | | cosine_recall@3 | 0.9583 | | cosine_recall@5 | 0.9688 | | cosine_recall@10 | 0.9948 | | cosine_ndcg@10 | 0.9306 | | cosine_mrr@10 | 0.9094 | | **cosine_map@100** | **0.9099** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7917 | | cosine_accuracy@3 | 0.9531 | | cosine_accuracy@5 | 0.974 | | cosine_accuracy@10 | 0.9896 | | cosine_precision@1 | 0.7917 | | cosine_precision@3 | 0.3177 | | cosine_precision@5 | 0.1948 | | cosine_precision@10 | 0.099 | | cosine_recall@1 | 0.7917 | | cosine_recall@3 | 0.9531 | | cosine_recall@5 | 0.974 | | cosine_recall@10 | 0.9896 | | cosine_ndcg@10 | 0.9004 | | cosine_mrr@10 | 0.8706 | | **cosine_map@100** | **0.8713** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.2 | 5 | 5.2225 | - | - | - | - | - | | 0.4 | 10 | 4.956 | - | - | - | - | - | | 0.6 | 15 | 3.6388 | - | - | - | - | - | | 0.8 | 20 | 3.1957 | - | - | - | - | - | | 1.0 | 25 | 2.6928 | 0.8661 | 0.8770 | 0.8754 | 0.8312 | 0.8871 | | 1.2 | 30 | 2.5565 | - | - | - | - | - | | 1.4 | 35 | 1.5885 | - | - | - | - | - | | 1.6 | 40 | 2.1406 | - | - | - | - | - | | 1.8 | 45 | 2.193 | - | - | - | - | - | | 2.0 | 50 | 1.326 | 0.8944 | 0.9110 | 0.9028 | 0.8615 | 0.9037 | | 2.2 | 55 | 2.6832 | - | - | - | - | - | | 2.4 | 60 | 1.0584 | - | - | - | - | - | | 2.6 | 65 | 0.8853 | - | - | - | - | - | | 2.8 | 70 | 1.7129 | - | - | - | - | - | | 3.0 | 75 | 2.1856 | 0.9106 | 0.9293 | 0.9075 | 0.8778 | 0.9266 | | 3.2 | 80 | 1.7658 | - | - | - | - | - | | 3.4 | 85 | 1.9783 | - | - | - | - | - | | 3.6 | 90 | 1.9583 | - | - | - | - | - | | 3.8 | 95 | 1.2396 | - | - | - | - | - | | 4.0 | 100 | 1.1901 | 0.9073 | 0.9253 | 0.9151 | 0.8750 | 0.9312 | | 4.2 | 105 | 2.6547 | - | - | - | - | - | | 4.4 | 110 | 1.3485 | - | - | - | - | - | | 4.6 | 115 | 1.0767 | - | - | - | - | - | | 4.8 | 120 | 0.6663 | - | - | - | - | - | | **5.0** | **125** | **1.3869** | **0.9099** | **0.9227** | **0.9221** | **0.8713** | **0.9264** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```