joshcx commited on
Commit
aa916c4
1 Parent(s): aa0abee

Add new SentenceTransformer model

Browse files
0_StaticEmbedding/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6c04b645b1611f9654e149dee254377f961fade290566bea3dd1703879629ad
3
+ size 30236768
0_StaticEmbedding/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ ---
10
+
11
+ # SentenceTransformer based on BAAI/bge-large-en
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+ - **Model Type:** Sentence Transformer
19
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
20
+ - **Maximum Sequence Length:** inf tokens
21
+ - **Output Dimensionality:** 256 tokens
22
+ - **Similarity Function:** Cosine Similarity
23
+ <!-- - **Training Dataset:** Unknown -->
24
+ <!-- - **Language:** Unknown -->
25
+ <!-- - **License:** Unknown -->
26
+
27
+ ### Model Sources
28
+
29
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
30
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
31
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
32
+
33
+ ### Full Model Architecture
34
+
35
+ ```
36
+ SentenceTransformer(
37
+ (0): StaticEmbedding(
38
+ (embedding): EmbeddingBag(29528, 256, mode='mean')
39
+ )
40
+ )
41
+ ```
42
+
43
+ ## Usage
44
+
45
+ ### Direct Usage (Sentence Transformers)
46
+
47
+ First install the Sentence Transformers library:
48
+
49
+ ```bash
50
+ pip install -U sentence-transformers
51
+ ```
52
+
53
+ Then you can load this model and run inference.
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
+
57
+ # Download from the 🤗 Hub
58
+ model = SentenceTransformer("joshcx/static-embedding-bge-large-en")
59
+ # Run inference
60
+ sentences = [
61
+ 'The weather is lovely today.',
62
+ "It's so sunny outside!",
63
+ 'He drove to the stadium.',
64
+ ]
65
+ embeddings = model.encode(sentences)
66
+ print(embeddings.shape)
67
+ # [3, 256]
68
+
69
+ # Get the similarity scores for the embeddings
70
+ similarities = model.similarity(embeddings, embeddings)
71
+ print(similarities.shape)
72
+ # [3, 3]
73
+ ```
74
+
75
+ <!--
76
+ ### Direct Usage (Transformers)
77
+
78
+ <details><summary>Click to see the direct usage in Transformers</summary>
79
+
80
+ </details>
81
+ -->
82
+
83
+ <!--
84
+ ### Downstream Usage (Sentence Transformers)
85
+
86
+ You can finetune this model on your own dataset.
87
+
88
+ <details><summary>Click to expand</summary>
89
+
90
+ </details>
91
+ -->
92
+
93
+ <!--
94
+ ### Out-of-Scope Use
95
+
96
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
97
+ -->
98
+
99
+ <!--
100
+ ## Bias, Risks and Limitations
101
+
102
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
103
+ -->
104
+
105
+ <!--
106
+ ### Recommendations
107
+
108
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
109
+ -->
110
+
111
+ ## Training Details
112
+
113
+ ### Framework Versions
114
+ - Python: 3.10.13
115
+ - Sentence Transformers: 3.2.1
116
+ - Transformers: 4.45.1
117
+ - PyTorch: 2.4.1
118
+ - Accelerate:
119
+ - Datasets:
120
+ - Tokenizers: 0.20.0
121
+
122
+ ## Citation
123
+
124
+ ### BibTeX
125
+
126
+ <!--
127
+ ## Glossary
128
+
129
+ *Clearly define terms in order to be accessible across audiences.*
130
+ -->
131
+
132
+ <!--
133
+ ## Model Card Authors
134
+
135
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
136
+ -->
137
+
138
+ <!--
139
+ ## Model Card Contact
140
+
141
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
142
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_StaticEmbedding",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ }
8
+ ]