Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"j
|
3 |
+
repo_id = "jonruida/model-IC"
|
4 |
+
|
5 |
+
query_pipeline = transformers.pipeline(
|
6 |
+
"text-generation",
|
7 |
+
model=model,
|
8 |
+
tokenizer=tokenizer,
|
9 |
+
torch_dtype=torch.float16,
|
10 |
+
device_map="auto", max_new_tokens=200)
|
11 |
+
|
12 |
+
def test_rag(pipeline, input_text):
|
13 |
+
docs = chroma_db/chroma.sqlite3.similarity_search_with_score(query)
|
14 |
+
context = []
|
15 |
+
for doc,score in docs:
|
16 |
+
if(score<7):
|
17 |
+
doc_details = doc.to_json()['kwargs']
|
18 |
+
context.append( doc_details['page_content'])
|
19 |
+
if(len(context)!=0):
|
20 |
+
messages = [{"role": "user", "content": "Bas谩ndote en la siguiente informaci贸n: " + "\n".join(context) + "\n Responde en castellano a la pregunta: " + query}]
|
21 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
22 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
23 |
+
answer = outputs[0]["generated_text"]
|
24 |
+
return answer[answer.rfind("[/INST]")+8:],docs
|
25 |
+
else:
|
26 |
+
return "No tengo informaci贸n para responder a esta pregunta",docs
|
27 |
+
|