--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-tokenCLS-BATTERY results: [] --- # bert-base-cased-tokenCLS-BATTERY This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0721 - Precision: 0.7139 - Recall: 0.8344 - F1: 0.7694 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 338 | 0.0863 | 0.6986 | 0.7607 | 0.7283 | 0.9722 | | 0.1495 | 2.0 | 676 | 0.0692 | 0.6966 | 0.8098 | 0.7489 | 0.9763 | | 0.0533 | 3.0 | 1014 | 0.0721 | 0.7139 | 0.8344 | 0.7694 | 0.9771 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3