from dataclasses import dataclass @dataclass class TrainingConfig: image_size = 128 # the generated image resolution train_batch_size = 4 eval_batch_size = 4 # how many images to sample during evaluation num_epochs = 50 gradient_accumulation_steps = 1 learning_rate = 1e-4 lr_warmup_steps = 500 save_image_epochs = 1 save_model_epochs = 3 mixed_precision = 'fp16' # `no` for float32, `fp16` for automatic mixed precision output_dir = '.' push_to_hub = True # whether to upload the saved model to the HF Hub hub_model_id = 'jmemon/ddpm-paintings-128-finetuned-cifar10' # the name of the repository to create on the HF Hub hub_private_repo = False overwrite_output_dir = True # overwrite the old model when re-running the notebook seed = 0