--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.77 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.7182 - Accuracy: 0.77 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0118 | 2.6667 | 100 | 1.4117 | 0.75 | | 0.0083 | 5.3333 | 200 | 1.4954 | 0.74 | | 0.0057 | 8.0 | 300 | 1.6342 | 0.75 | | 0.0047 | 10.6667 | 400 | 1.6888 | 0.77 | | 0.0031 | 13.3333 | 500 | 1.6774 | 0.77 | | 0.0028 | 16.0 | 600 | 1.7023 | 0.77 | | 0.0033 | 18.6667 | 700 | 1.7182 | 0.77 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1