jj97 commited on
Commit
43e6e09
·
verified ·
1 Parent(s): 8cd23b4

DeepRL unit1 assignment

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 285.39 +/- 19.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7adc97a3a560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7adc97a3a5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7adc97a3a680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7adc97a3a710>", "_build": "<function ActorCriticPolicy._build at 0x7adc97a3a7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7adc97a3a830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7adc97a3a8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7adc97a3a950>", "_predict": "<function ActorCriticPolicy._predict at 0x7adc97a3a9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7adc97a3aa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7adc97a3ab00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7adc97a3ab90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7adc979e4600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722564471021973580, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYLkL0plCu6s8A+OcaJgDRzTB87pmdhuAAAgD8AAIA/mpEnvRSEm7pvCAK0azyLrqoVVLrplaEzAACAPwAAgD8AceW8KZB0ur8YpzYR+7cxoNOrOiDdx7UAAIA/AACAP5oag73eWKQ9+lgPPiGR3L5GhEe87lgSPgAAAAAAAAAAmgnxPK7drrpiMT4y2cDysFplKLrcY4qyAACAPwAAgD9zUJS94Cq7P9fzDL9rky89gRE+vR4CjL4AAAAAAAAAABqy9b0EX0Y/VXL1vTCzVr80GGm+aeY/vQAAAAAAAAAAZoBaPcbxcz9kysQ9vEqNv+Mfiz3SSA88AAAAAAAAAAAAjLo8XOsmupX+xL0fnFEzDehSOi2sZbMAAIA/AACAPzPWQb46YKk/7ocdv4qYAL/bd9a+u3H1vgAAAAAAAAAA5iExPVybSbqe37Myr50EsezmFDql5TuzAACAPwAAgD9tRgk+uLnRu4brgbq9uEw4XZIvvX6sszkAAIA/AACAP80LdL1Ig+K6l6hEPFSMiTwMh5O6nHRBugAAgD8AAIA/ZoGlvbgGiLul7wo+LJmLvrcv6j2KFoC/AAAAAAAAgD+a3lU9SKufut0sJDgPchwzKZGmOto2PbcAAIA/AACAP0CPxb09IgW7AkvzOwM9izw+fQy89lRxPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/Bbpu/DceMAWyUS4CMAXSUR0C2LYJsO5J9dX2UKGgGR0Bx6d+mWMS9aAdLf2gIR0C2LYh3aBZqdX2UKGgGR0ByqWdMCcPOaAdLq2gIR0C2LY9VWCEpdX2UKGgGR0BxbQTrVvuPaAdLpWgIR0C2LZY8lolEdX2UKGgGR0Bx7xQhwEQoaAdLnGgIR0C2LZzRplBhdX2UKGgGR0Bx1H0rbxmTaAdLhGgIR0C2LckGZ/kOdX2UKGgGR0Bxxq4rjHXFaAdLjmgIR0C2LdBf4REndX2UKGgGR0ByKdXXAdn1aAdLsWgIR0C2LdJvxYq5dX2UKGgGR0ByD4vugHu7aAdLx2gIR0C2LdiaNMoMdX2UKGgGR0BwRLBfrrxBaAdLkmgIR0C2Lg0srd30dX2UKGgGR0ByeRtMwlByaAdLpGgIR0C2LjnmA9V4dX2UKGgGR0BydLjp9qk/aAdLqmgIR0C2LjikbgjydX2UKGgGR0Byd50wJw85aAdLpGgIR0C2Ll4akyk9dX2UKGgGR0BxbPBacI7eaAdLhGgIR0C2LmJIQOFydX2UKGgGR0Bx0r779AHFaAdLlmgIR0C2LnBoRIz4dX2UKGgGR0BxX7w6QvHtaAdLomgIR0C2LnLkwN9ZdX2UKGgGR0ByyUfbKzRhaAdLpWgIR0C2LnKhUR4AdX2UKGgGR0BxfyKyfL9uaAdLpmgIR0C2LobyYoiLdX2UKGgGR0Bw3spTdcjaaAdLomgIR0C2Lpym/FisdX2UKGgGR0B0P2w+t8u0aAdLvmgIR0C2LqV67dzodX2UKGgGR0BxFIpVjqfOaAdLfmgIR0C2LqWYWtU5dX2UKGgGR0BzgOO7xusLaAdLv2gIR0C2LrxzNliCdX2UKGgGR0BwXTq1PWQPaAdLomgIR0C2Ls56QeV+dX2UKGgGR0Bxbt1IRRMwaAdLu2gIR0C2LwJ1mrbQdX2UKGgGR0BzaVUipvP1aAdLv2gIR0C2LwvlhgE2dX2UKGgGR0BwkeWom5UcaAdLr2gIR0C2LzJRfnfVdX2UKGgGR0Bzbr9n9NvgaAdLn2gIR0C2L0ckyDZldX2UKGgGR0Bwp0+s5n14aAdLimgIR0C2L0xTjvNNdX2UKGgGR0By3u4SYgJUaAdLlWgIR0C2L24DgZTAdX2UKGgGR0ByOvtXxOLzaAdLh2gIR0C2L4D7IkqudX2UKGgGR0ByAOIJqqOtaAdLhWgIR0C2L4Y6jnFHdX2UKGgGR0ByWNbwBo25aAdLyGgIR0C2L4ruIAOsdX2UKGgGR0BzNwOmR/3GaAdLqWgIR0C2L5FFH8TBdX2UKGgGR0BzWqrlvIfbaAdLq2gIR0C2L5MYEW69dX2UKGgGR0ByhL9cbBGhaAdLp2gIR0C2L5/0dzXCdX2UKGgGR0BzHNm29crzaAdLv2gIR0C2L6Hw9aEBdX2UKGgGR0Bw/IXUH6dlaAdLlWgIR0C2L8ZnL7oCdX2UKGgGR0Bxo5/nW8RMaAdLqmgIR0C2L9UQkHD8dX2UKGgGR0Bxfg7lq8DkaAdLl2gIR0C2L/mZ3LV4dX2UKGgGR0BxfFBVuJk5aAdL02gIR0C2MAENWluWdX2UKGgGR0BxA6NZNfw7aAdLlWgIR0C2L/+kpI+XdX2UKGgGR0Byobw9aEBbaAdLgWgIR0C2MBa3VkMDdX2UKGgGR0BxJVZxJd0JaAdLimgIR0C2MCrZvkzXdX2UKGgGR0Bx3/R/mT1TaAdLemgIR0C2MD+Jxeb/dX2UKGgGR0ByH0kona37aAdLq2gIR0C2MENDpkf+dX2UKGgGR0BzcRdzGPxQaAdLimgIR0C2MFpL7GeddX2UKGgGR0Bx04Vzp5eJaAdLo2gIR0C2MF70WdmQdX2UKGgGR0Bw4Pp4bCJoaAdLlmgIR0C2MGEYXO4YdX2UKGgGR0BxhdMM7U5NaAdLemgIR0C2MG/2PDHfdX2UKGgGR0ByueNkvsZ6aAdLqWgIR0C2MHZQYUFjdX2UKGgGR0BzIW2+fywwaAdLr2gIR0C2MH9hiLEUdX2UKGgGR0Bx8WHGjsUqaAdLe2gIR0C2MJUY8+zMdX2UKGgGR0BwplCBwuM/aAdLv2gIR0C2MJoiosI3dX2UKGgGR0Bzcij7ALy+aAdLvmgIR0C2MJrwF1SwdX2UKGgGR0A+3n/T9bX6aAdLXmgIR0C2MKXpwCKadX2UKGgGR0BzCOZ6Uqx1aAdLimgIR0C2MKSo86mwdX2UKGgGR0Bwsy3azu4PaAdLqWgIR0C2MKlIRRMwdX2UKGgGR0BxnTM2WIGhaAdLimgIR0C2MLMbWEsbdX2UKGgGR0BxYsvUSZjQaAdLp2gIR0C2MLwctGutdX2UKGgGR0BzEw2XLNfPaAdLlmgIR0C2MMgN5MURdX2UKGgGR0BI8sr3Cbc5aAdLU2gIR0C2MO4SteUqdX2UKGgGR0BwEgc94eLfaAdLq2gIR0C2MO7YK6WgdX2UKGgGR0BvII0CRwIdaAdLl2gIR0C2MPv/7zkIdX2UKGgGR0BwKVFXq7iAaAdLnGgIR0C2MPrLt/nXdX2UKGgGR0BxchkpZwGXaAdLrWgIR0C2MRNxEORUdX2UKGgGR0ByI2X/o7muaAdLrmgIR0C2MS7w8W9EdX2UKGgGR0Bxvfm1YyO8aAdLrWgIR0C2MTgbQ1JldX2UKGgGR0Bx4iBBiTdMaAdLzGgIR0C2MUpM10kodX2UKGgGR0BxRf6vaDf4aAdLo2gIR0C2MVV10T11dX2UKGgGR0BxU19oexOdaAdLqWgIR0C2MWCpJf6XdX2UKGgGR0Bxloo4MnZ1aAdLsGgIR0C2MWOaWom5dX2UKGgGR0BziUdHUc4paAdLzGgIR0C2MXSJXQt0dX2UKGgGR0BxPSrWAf+1aAdLmGgIR0C2MXOXAuZkdX2UKGgGR0By2PkIX0oSaAdLuGgIR0C2MX23z+WGdX2UKGgGR0By763fAKv3aAdLrGgIR0C2MXxhlUZOdX2UKGgGR0ByKl+7UXpGaAdL22gIR0C2MYknb7CSdX2UKGgGR0BxkIqI7/4qaAdLfGgIR0C2MYiN0eU7dX2UKGgGR0By3ExASnLraAdLm2gIR0C2MZweeWfLdX2UKGgGR0BwFbzTWoWIaAdLnmgIR0C2MZ9hZyMldX2UKGgGR0BxHTCSA6MjaAdLjmgIR0C2MbJof0VadX2UKGgGR0Bxp7l8w5/9aAdLr2gIR0C2McCROk+HdX2UKGgGR0BwDsrUb1h9aAdLj2gIR0C2Mc2MGX5WdX2UKGgGR0BylkHNX5nEaAdLpWgIR0C2MfEZR8+idX2UKGgGR0Bv1r987ZFoaAdLjWgIR0C2MgDa4+bFdX2UKGgGR0BHwWO6unuRaAdLaGgIR0C2MhZudf9hdX2UKGgGR0ByAbZlFtsOaAdLhmgIR0C2Mh+jIq9XdX2UKGgGR0BzYhV5rxiHaAdLt2gIR0C2MiNTHbRGdX2UKGgGR0BvH75Ec81XaAdLiWgIR0C2MiJ/kNnXdX2UKGgGR0BzotkBjnV5aAdLr2gIR0C2MiVjI7vHdX2UKGgGR0Bzl9gRbr1NaAdLoWgIR0C2Mii6lLvkdX2UKGgGR0BydLsMRYigaAdLmWgIR0C2MiesPrfMdX2UKGgGR0Bz85JjDsMRaAdLymgIR0C2Mi2hdt2tdX2UKGgGR0Bxvj8dgfEGaAdLqGgIR0C2Mi7e2uxKdX2UKGgGR0ByF+DUVi4KaAdLqWgIR0C2MjlN1yNodX2UKGgGR0BvBYZMtbs4aAdLjGgIR0C2MjpT2nKodX2UKGgGR0Bw3TkWAPNFaAdLh2gIR0C2MlUXP7emdX2UKGgGR0BwUnChvitJaAdLn2gIR0C2MnxsImgKdX2UKGgGR0ByVrFBIFvAaAdLuWgIR0C2Mn4Bq9GrdX2UKGgGR0BxlSQV9F4LaAdLnmgIR0C2Mp0AT7EYdX2UKGgGR0Byy/31zySWaAdLhmgIR0C2MrHTd+G5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ef76b65c5ced9313ab4ebe8374476c9b733d06b034e4d8c91615f067c70be67
3
+ size 147954
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7adc97a3a560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7adc97a3a5f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7adc97a3a680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7adc97a3a710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7adc97a3a7a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7adc97a3a830>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7adc97a3a8c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7adc97a3a950>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7adc97a3a9e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7adc97a3aa70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7adc97a3ab00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7adc97a3ab90>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7adc979e4600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1722564471021973580,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYLkL0plCu6s8A+OcaJgDRzTB87pmdhuAAAgD8AAIA/mpEnvRSEm7pvCAK0azyLrqoVVLrplaEzAACAPwAAgD8AceW8KZB0ur8YpzYR+7cxoNOrOiDdx7UAAIA/AACAP5oag73eWKQ9+lgPPiGR3L5GhEe87lgSPgAAAAAAAAAAmgnxPK7drrpiMT4y2cDysFplKLrcY4qyAACAPwAAgD9zUJS94Cq7P9fzDL9rky89gRE+vR4CjL4AAAAAAAAAABqy9b0EX0Y/VXL1vTCzVr80GGm+aeY/vQAAAAAAAAAAZoBaPcbxcz9kysQ9vEqNv+Mfiz3SSA88AAAAAAAAAAAAjLo8XOsmupX+xL0fnFEzDehSOi2sZbMAAIA/AACAPzPWQb46YKk/7ocdv4qYAL/bd9a+u3H1vgAAAAAAAAAA5iExPVybSbqe37Myr50EsezmFDql5TuzAACAPwAAgD9tRgk+uLnRu4brgbq9uEw4XZIvvX6sszkAAIA/AACAP80LdL1Ig+K6l6hEPFSMiTwMh5O6nHRBugAAgD8AAIA/ZoGlvbgGiLul7wo+LJmLvrcv6j2KFoC/AAAAAAAAgD+a3lU9SKufut0sJDgPchwzKZGmOto2PbcAAIA/AACAP0CPxb09IgW7AkvzOwM9izw+fQy89lRxPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0027007999999999477,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/Bbpu/DceMAWyUS4CMAXSUR0C2LYJsO5J9dX2UKGgGR0Bx6d+mWMS9aAdLf2gIR0C2LYh3aBZqdX2UKGgGR0ByqWdMCcPOaAdLq2gIR0C2LY9VWCEpdX2UKGgGR0BxbQTrVvuPaAdLpWgIR0C2LZY8lolEdX2UKGgGR0Bx7xQhwEQoaAdLnGgIR0C2LZzRplBhdX2UKGgGR0Bx1H0rbxmTaAdLhGgIR0C2LckGZ/kOdX2UKGgGR0Bxxq4rjHXFaAdLjmgIR0C2LdBf4REndX2UKGgGR0ByKdXXAdn1aAdLsWgIR0C2LdJvxYq5dX2UKGgGR0ByD4vugHu7aAdLx2gIR0C2LdiaNMoMdX2UKGgGR0BwRLBfrrxBaAdLkmgIR0C2Lg0srd30dX2UKGgGR0ByeRtMwlByaAdLpGgIR0C2LjnmA9V4dX2UKGgGR0BydLjp9qk/aAdLqmgIR0C2LjikbgjydX2UKGgGR0Byd50wJw85aAdLpGgIR0C2Ll4akyk9dX2UKGgGR0BxbPBacI7eaAdLhGgIR0C2LmJIQOFydX2UKGgGR0Bx0r779AHFaAdLlmgIR0C2LnBoRIz4dX2UKGgGR0BxX7w6QvHtaAdLomgIR0C2LnLkwN9ZdX2UKGgGR0ByyUfbKzRhaAdLpWgIR0C2LnKhUR4AdX2UKGgGR0BxfyKyfL9uaAdLpmgIR0C2LobyYoiLdX2UKGgGR0Bw3spTdcjaaAdLomgIR0C2Lpym/FisdX2UKGgGR0B0P2w+t8u0aAdLvmgIR0C2LqV67dzodX2UKGgGR0BxFIpVjqfOaAdLfmgIR0C2LqWYWtU5dX2UKGgGR0BzgOO7xusLaAdLv2gIR0C2LrxzNliCdX2UKGgGR0BwXTq1PWQPaAdLomgIR0C2Ls56QeV+dX2UKGgGR0Bxbt1IRRMwaAdLu2gIR0C2LwJ1mrbQdX2UKGgGR0BzaVUipvP1aAdLv2gIR0C2LwvlhgE2dX2UKGgGR0BwkeWom5UcaAdLr2gIR0C2LzJRfnfVdX2UKGgGR0Bzbr9n9NvgaAdLn2gIR0C2L0ckyDZldX2UKGgGR0Bwp0+s5n14aAdLimgIR0C2L0xTjvNNdX2UKGgGR0By3u4SYgJUaAdLlWgIR0C2L24DgZTAdX2UKGgGR0ByOvtXxOLzaAdLh2gIR0C2L4D7IkqudX2UKGgGR0ByAOIJqqOtaAdLhWgIR0C2L4Y6jnFHdX2UKGgGR0ByWNbwBo25aAdLyGgIR0C2L4ruIAOsdX2UKGgGR0BzNwOmR/3GaAdLqWgIR0C2L5FFH8TBdX2UKGgGR0BzWqrlvIfbaAdLq2gIR0C2L5MYEW69dX2UKGgGR0ByhL9cbBGhaAdLp2gIR0C2L5/0dzXCdX2UKGgGR0BzHNm29crzaAdLv2gIR0C2L6Hw9aEBdX2UKGgGR0Bw/IXUH6dlaAdLlWgIR0C2L8ZnL7oCdX2UKGgGR0Bxo5/nW8RMaAdLqmgIR0C2L9UQkHD8dX2UKGgGR0Bxfg7lq8DkaAdLl2gIR0C2L/mZ3LV4dX2UKGgGR0BxfFBVuJk5aAdL02gIR0C2MAENWluWdX2UKGgGR0BxA6NZNfw7aAdLlWgIR0C2L/+kpI+XdX2UKGgGR0Byobw9aEBbaAdLgWgIR0C2MBa3VkMDdX2UKGgGR0BxJVZxJd0JaAdLimgIR0C2MCrZvkzXdX2UKGgGR0Bx3/R/mT1TaAdLemgIR0C2MD+Jxeb/dX2UKGgGR0ByH0kona37aAdLq2gIR0C2MENDpkf+dX2UKGgGR0BzcRdzGPxQaAdLimgIR0C2MFpL7GeddX2UKGgGR0Bx04Vzp5eJaAdLo2gIR0C2MF70WdmQdX2UKGgGR0Bw4Pp4bCJoaAdLlmgIR0C2MGEYXO4YdX2UKGgGR0BxhdMM7U5NaAdLemgIR0C2MG/2PDHfdX2UKGgGR0ByueNkvsZ6aAdLqWgIR0C2MHZQYUFjdX2UKGgGR0BzIW2+fywwaAdLr2gIR0C2MH9hiLEUdX2UKGgGR0Bx8WHGjsUqaAdLe2gIR0C2MJUY8+zMdX2UKGgGR0BwplCBwuM/aAdLv2gIR0C2MJoiosI3dX2UKGgGR0Bzcij7ALy+aAdLvmgIR0C2MJrwF1SwdX2UKGgGR0A+3n/T9bX6aAdLXmgIR0C2MKXpwCKadX2UKGgGR0BzCOZ6Uqx1aAdLimgIR0C2MKSo86mwdX2UKGgGR0Bwsy3azu4PaAdLqWgIR0C2MKlIRRMwdX2UKGgGR0BxnTM2WIGhaAdLimgIR0C2MLMbWEsbdX2UKGgGR0BxYsvUSZjQaAdLp2gIR0C2MLwctGutdX2UKGgGR0BzEw2XLNfPaAdLlmgIR0C2MMgN5MURdX2UKGgGR0BI8sr3Cbc5aAdLU2gIR0C2MO4SteUqdX2UKGgGR0BwEgc94eLfaAdLq2gIR0C2MO7YK6WgdX2UKGgGR0BvII0CRwIdaAdLl2gIR0C2MPv/7zkIdX2UKGgGR0BwKVFXq7iAaAdLnGgIR0C2MPrLt/nXdX2UKGgGR0BxchkpZwGXaAdLrWgIR0C2MRNxEORUdX2UKGgGR0ByI2X/o7muaAdLrmgIR0C2MS7w8W9EdX2UKGgGR0Bxvfm1YyO8aAdLrWgIR0C2MTgbQ1JldX2UKGgGR0Bx4iBBiTdMaAdLzGgIR0C2MUpM10kodX2UKGgGR0BxRf6vaDf4aAdLo2gIR0C2MVV10T11dX2UKGgGR0BxU19oexOdaAdLqWgIR0C2MWCpJf6XdX2UKGgGR0Bxloo4MnZ1aAdLsGgIR0C2MWOaWom5dX2UKGgGR0BziUdHUc4paAdLzGgIR0C2MXSJXQt0dX2UKGgGR0BxPSrWAf+1aAdLmGgIR0C2MXOXAuZkdX2UKGgGR0By2PkIX0oSaAdLuGgIR0C2MX23z+WGdX2UKGgGR0By763fAKv3aAdLrGgIR0C2MXxhlUZOdX2UKGgGR0ByKl+7UXpGaAdL22gIR0C2MYknb7CSdX2UKGgGR0BxkIqI7/4qaAdLfGgIR0C2MYiN0eU7dX2UKGgGR0By3ExASnLraAdLm2gIR0C2MZweeWfLdX2UKGgGR0BwFbzTWoWIaAdLnmgIR0C2MZ9hZyMldX2UKGgGR0BxHTCSA6MjaAdLjmgIR0C2MbJof0VadX2UKGgGR0Bxp7l8w5/9aAdLr2gIR0C2McCROk+HdX2UKGgGR0BwDsrUb1h9aAdLj2gIR0C2Mc2MGX5WdX2UKGgGR0BylkHNX5nEaAdLpWgIR0C2MfEZR8+idX2UKGgGR0Bv1r987ZFoaAdLjWgIR0C2MgDa4+bFdX2UKGgGR0BHwWO6unuRaAdLaGgIR0C2MhZudf9hdX2UKGgGR0ByAbZlFtsOaAdLhmgIR0C2Mh+jIq9XdX2UKGgGR0BzYhV5rxiHaAdLt2gIR0C2MiNTHbRGdX2UKGgGR0BvH75Ec81XaAdLiWgIR0C2MiJ/kNnXdX2UKGgGR0BzotkBjnV5aAdLr2gIR0C2MiVjI7vHdX2UKGgGR0Bzl9gRbr1NaAdLoWgIR0C2Mii6lLvkdX2UKGgGR0BydLsMRYigaAdLmWgIR0C2MiesPrfMdX2UKGgGR0Bz85JjDsMRaAdLymgIR0C2Mi2hdt2tdX2UKGgGR0Bxvj8dgfEGaAdLqGgIR0C2Mi7e2uxKdX2UKGgGR0ByF+DUVi4KaAdLqWgIR0C2MjlN1yNodX2UKGgGR0BvBYZMtbs4aAdLjGgIR0C2MjpT2nKodX2UKGgGR0Bw3TkWAPNFaAdLh2gIR0C2MlUXP7emdX2UKGgGR0BwUnChvitJaAdLn2gIR0C2MnxsImgKdX2UKGgGR0ByVrFBIFvAaAdLuWgIR0C2Mn4Bq9GrdX2UKGgGR0BxlSQV9F4LaAdLnmgIR0C2Mp0AT7EYdX2UKGgGR0Byy/31zySWaAdLhmgIR0C2MrHTd+G5dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1530,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:330b7902b5fa2665e967ebcf9e7722ca016a82659af383de8cdc69c58529cc86
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04d05f76d52fe5521396455f2016ac8bda745ee63eb869f224446267747ac3ba
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (151 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.3861962, "std_reward": 19.9444458680877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-02T03:45:32.851711"}