--- license: bsd-3-clause --- # ProGen2-xlarge HF mirror for ProGen2-small for **Protein Engineering** [Official GitHub](https://github.com/salesforce/progen/tree/main/progen2) of [ProGen2 by Nijkamp et al.](https://www.cell.com/cell-systems/fulltext/S2405-4712(23)00272-7). - The ProGen2 suite of protein language models are scaled to 6.4B parameters - Models with increased scale better capture the distribution of protein sequences - ProGen2 models generate novel protein sequences adopting natural folds - ProGen2 model likelihoods are effective for zero-shot fitness prediction ```python import torch from faesm.progen2 import ProGenForCausalLM from transformers import AutoTokenizer device = 'cuda' if torch.cuda.is_available() else 'cpu' model = ProGenForCausalLM.from_pretrained("jinyuan22/ProGen2-xlarge").to(torch.float16).to(device).eval() tokenizer = AutoTokenizer.from_pretrained("jinyuan22/ProGen2-xlarge") # sequence = "1" + "ACDEFGHIKLMNPQRSTVWY" * 50 + "2" # 1002 token sequence = "2GFLPFRGADEGLAAREAATLAARGTAARAYREDSWAVPVPRGLLGDLTARVAALGAASPPPADPLAVTLDLHHVTAEVALTTVLDAATLVHGQTRVLSAEDAAEAATAAAAATEAYLERLQDFVLFMSASVRVWRRGNAAGATGPEWDQWYTVADRDALGSAPTHLAVLGRQADALCHFVLDRVAWGTCGTPLWSGDEDLGNVVATFAGYADRLATAPRDLIM1" inputs = tokenizer(sequence, return_tensors="pt").to(device) with torch.no_grad(): logits = model(inputs.input_ids, labels=inputs.input_ids).logits logits = logits[0][:-1, ...] target = inputs.input_ids[0, 1:] # remove unused logits first_token, last_token = 5, 29 logits = logits[:, first_token:(last_token+1)] target = target - first_token ce_eval = torch.nn.functional.cross_entropy(input=logits.view(-1, logits.size(-1)), target=target.view(-1), reduction="mean").item() print(ce_eval) assert abs(ce_eval - 1.0) < 0.1 ```