--- pipeline_tag: sentence-similarity tags: - finetuner - sentence-transformers - feature-extraction - sentence-similarity - mteb datasets: - jinaai/negation-dataset language: en license: apache-2.0 model-index: - name: jina-embedding-b-en-v1 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 66.73134328358208 - type: ap value: 28.30575908745204 - type: f1 value: 60.02420130946191 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 67.6068 - type: ap value: 63.5899352938589 - type: f1 value: 65.64285334357656 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.178 - type: f1 value: 29.68460843733487 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 24.964 - type: map_at_10 value: 40.217999999999996 - type: map_at_100 value: 41.263 - type: map_at_1000 value: 41.277 - type: map_at_3 value: 35.183 - type: map_at_5 value: 38.045 - type: mrr_at_1 value: 25.107000000000003 - type: mrr_at_10 value: 40.272999999999996 - type: mrr_at_100 value: 41.318 - type: mrr_at_1000 value: 41.333 - type: mrr_at_3 value: 35.242000000000004 - type: mrr_at_5 value: 38.101 - type: ndcg_at_1 value: 24.964 - type: ndcg_at_10 value: 49.006 - type: ndcg_at_100 value: 53.446000000000005 - type: ndcg_at_1000 value: 53.813 - type: ndcg_at_3 value: 38.598 - type: ndcg_at_5 value: 43.74 - type: precision_at_1 value: 24.964 - type: precision_at_10 value: 7.724 - type: precision_at_100 value: 0.966 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 16.169 - type: precision_at_5 value: 12.191 - type: recall_at_1 value: 24.964 - type: recall_at_10 value: 77.24 - type: recall_at_100 value: 96.586 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 48.506 - type: recall_at_5 value: 60.953 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 39.25203906042786 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 29.07648348376354 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.4029266143623 - type: mrr value: 75.45750340764191 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.92280995704714 - type: cos_sim_spearman value: 83.58082010833608 - type: euclidean_pearson value: 48.64744162695948 - type: euclidean_spearman value: 48.817377397301556 - type: manhattan_pearson value: 48.87684776623195 - type: manhattan_spearman value: 48.94268145725884 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.05519480519482 - type: f1 value: 83.94978356890618 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 32.2033276486685 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 26.631954164406014 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.625 - type: map_at_10 value: 40.037 - type: map_at_100 value: 41.52 - type: map_at_1000 value: 41.654 - type: map_at_3 value: 36.818 - type: map_at_5 value: 38.426 - type: mrr_at_1 value: 35.336 - type: mrr_at_10 value: 45.395 - type: mrr_at_100 value: 46.221000000000004 - type: mrr_at_1000 value: 46.264 - type: mrr_at_3 value: 42.823 - type: mrr_at_5 value: 44.204 - type: ndcg_at_1 value: 35.336 - type: ndcg_at_10 value: 46.326 - type: ndcg_at_100 value: 51.795 - type: ndcg_at_1000 value: 53.834 - type: ndcg_at_3 value: 41.299 - type: ndcg_at_5 value: 43.247 - type: precision_at_1 value: 35.336 - type: precision_at_10 value: 8.627 - type: precision_at_100 value: 1.428 - type: precision_at_1000 value: 0.197 - type: precision_at_3 value: 19.647000000000002 - type: precision_at_5 value: 13.733999999999998 - type: recall_at_1 value: 29.625 - type: recall_at_10 value: 59.165 - type: recall_at_100 value: 81.675 - type: recall_at_1000 value: 94.17 - type: recall_at_3 value: 44.485 - type: recall_at_5 value: 50.198 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.687 - type: map_at_10 value: 36.062 - type: map_at_100 value: 37.263000000000005 - type: map_at_1000 value: 37.397999999999996 - type: map_at_3 value: 32.967 - type: map_at_5 value: 34.75 - type: mrr_at_1 value: 33.885 - type: mrr_at_10 value: 42.632999999999996 - type: mrr_at_100 value: 43.305 - type: mrr_at_1000 value: 43.354 - type: mrr_at_3 value: 39.958 - type: mrr_at_5 value: 41.63 - type: ndcg_at_1 value: 33.885 - type: ndcg_at_10 value: 42.001 - type: ndcg_at_100 value: 46.436 - type: ndcg_at_1000 value: 48.774 - type: ndcg_at_3 value: 37.183 - type: ndcg_at_5 value: 39.605000000000004 - type: precision_at_1 value: 33.885 - type: precision_at_10 value: 7.962 - type: precision_at_100 value: 1.283 - type: precision_at_1000 value: 0.18 - type: precision_at_3 value: 17.855999999999998 - type: precision_at_5 value: 13.083 - type: recall_at_1 value: 26.687 - type: recall_at_10 value: 52.75 - type: recall_at_100 value: 71.324 - type: recall_at_1000 value: 86.356 - type: recall_at_3 value: 38.83 - type: recall_at_5 value: 45.23 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 34.02 - type: map_at_10 value: 45.751999999999995 - type: map_at_100 value: 46.867 - type: map_at_1000 value: 46.93 - type: map_at_3 value: 42.409 - type: map_at_5 value: 44.464999999999996 - type: mrr_at_1 value: 38.307 - type: mrr_at_10 value: 48.718 - type: mrr_at_100 value: 49.509 - type: mrr_at_1000 value: 49.542 - type: mrr_at_3 value: 46.007999999999996 - type: mrr_at_5 value: 47.766999999999996 - type: ndcg_at_1 value: 38.307 - type: ndcg_at_10 value: 51.666999999999994 - type: ndcg_at_100 value: 56.242000000000004 - type: ndcg_at_1000 value: 57.477999999999994 - type: ndcg_at_3 value: 45.912 - type: ndcg_at_5 value: 49.106 - type: precision_at_1 value: 38.307 - type: precision_at_10 value: 8.476 - type: precision_at_100 value: 1.176 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 20.522000000000002 - type: precision_at_5 value: 14.557999999999998 - type: recall_at_1 value: 34.02 - type: recall_at_10 value: 66.046 - type: recall_at_100 value: 85.817 - type: recall_at_1000 value: 94.453 - type: recall_at_3 value: 51.059 - type: recall_at_5 value: 58.667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.939 - type: map_at_10 value: 32.627 - type: map_at_100 value: 33.617999999999995 - type: map_at_1000 value: 33.701 - type: map_at_3 value: 30.11 - type: map_at_5 value: 31.380000000000003 - type: mrr_at_1 value: 25.989 - type: mrr_at_10 value: 34.655 - type: mrr_at_100 value: 35.502 - type: mrr_at_1000 value: 35.563 - type: mrr_at_3 value: 32.109 - type: mrr_at_5 value: 33.426 - type: ndcg_at_1 value: 25.989 - type: ndcg_at_10 value: 37.657000000000004 - type: ndcg_at_100 value: 42.467 - type: ndcg_at_1000 value: 44.677 - type: ndcg_at_3 value: 32.543 - type: ndcg_at_5 value: 34.74 - type: precision_at_1 value: 25.989 - type: precision_at_10 value: 5.876 - type: precision_at_100 value: 0.8710000000000001 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.861 - type: precision_at_5 value: 9.626999999999999 - type: recall_at_1 value: 23.939 - type: recall_at_10 value: 51.28 - type: recall_at_100 value: 73.428 - type: recall_at_1000 value: 90.309 - type: recall_at_3 value: 37.245 - type: recall_at_5 value: 42.541000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.082 - type: map_at_10 value: 22.486 - type: map_at_100 value: 23.687 - type: map_at_1000 value: 23.807000000000002 - type: map_at_3 value: 20.076 - type: map_at_5 value: 21.362000000000002 - type: mrr_at_1 value: 18.532 - type: mrr_at_10 value: 26.605 - type: mrr_at_100 value: 27.628999999999998 - type: mrr_at_1000 value: 27.698 - type: mrr_at_3 value: 23.964 - type: mrr_at_5 value: 25.319000000000003 - type: ndcg_at_1 value: 18.532 - type: ndcg_at_10 value: 27.474999999999998 - type: ndcg_at_100 value: 33.357 - type: ndcg_at_1000 value: 36.361 - type: ndcg_at_3 value: 22.851 - type: ndcg_at_5 value: 24.87 - type: precision_at_1 value: 18.532 - type: precision_at_10 value: 5.210999999999999 - type: precision_at_100 value: 0.9329999999999999 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 11.235000000000001 - type: precision_at_5 value: 8.134 - type: recall_at_1 value: 15.082 - type: recall_at_10 value: 38.759 - type: recall_at_100 value: 64.621 - type: recall_at_1000 value: 86.162 - type: recall_at_3 value: 26.055 - type: recall_at_5 value: 31.208999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.759999999999998 - type: map_at_10 value: 33.706 - type: map_at_100 value: 35.0 - type: map_at_1000 value: 35.134 - type: map_at_3 value: 30.789 - type: map_at_5 value: 32.427 - type: mrr_at_1 value: 29.548000000000002 - type: mrr_at_10 value: 38.521 - type: mrr_at_100 value: 39.432 - type: mrr_at_1000 value: 39.494 - type: mrr_at_3 value: 35.691 - type: mrr_at_5 value: 37.424 - type: ndcg_at_1 value: 29.548000000000002 - type: ndcg_at_10 value: 39.301 - type: ndcg_at_100 value: 44.907000000000004 - type: ndcg_at_1000 value: 47.494 - type: ndcg_at_3 value: 34.08 - type: ndcg_at_5 value: 36.649 - type: precision_at_1 value: 29.548000000000002 - type: precision_at_10 value: 7.084 - type: precision_at_100 value: 1.169 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 15.881 - type: precision_at_5 value: 11.53 - type: recall_at_1 value: 24.759999999999998 - type: recall_at_10 value: 51.202000000000005 - type: recall_at_100 value: 74.542 - type: recall_at_1000 value: 91.669 - type: recall_at_3 value: 36.892 - type: recall_at_5 value: 43.333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.247999999999998 - type: map_at_10 value: 31.878 - type: map_at_100 value: 33.135 - type: map_at_1000 value: 33.263999999999996 - type: map_at_3 value: 29.406 - type: map_at_5 value: 30.602 - type: mrr_at_1 value: 28.767 - type: mrr_at_10 value: 36.929 - type: mrr_at_100 value: 37.844 - type: mrr_at_1000 value: 37.913000000000004 - type: mrr_at_3 value: 34.589 - type: mrr_at_5 value: 35.908 - type: ndcg_at_1 value: 28.767 - type: ndcg_at_10 value: 37.172 - type: ndcg_at_100 value: 42.842 - type: ndcg_at_1000 value: 45.534 - type: ndcg_at_3 value: 32.981 - type: ndcg_at_5 value: 34.628 - type: precision_at_1 value: 28.767 - type: precision_at_10 value: 6.678000000000001 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 15.715000000000002 - type: precision_at_5 value: 10.913 - type: recall_at_1 value: 23.247999999999998 - type: recall_at_10 value: 48.16 - type: recall_at_100 value: 72.753 - type: recall_at_1000 value: 90.8 - type: recall_at_3 value: 35.961999999999996 - type: recall_at_5 value: 40.504 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.825583333333334 - type: map_at_10 value: 32.2845 - type: map_at_100 value: 33.48566666666667 - type: map_at_1000 value: 33.60833333333333 - type: map_at_3 value: 29.604916666666664 - type: map_at_5 value: 31.015333333333334 - type: mrr_at_1 value: 27.850916666666663 - type: mrr_at_10 value: 36.122416666666666 - type: mrr_at_100 value: 37.01275 - type: mrr_at_1000 value: 37.07566666666667 - type: mrr_at_3 value: 33.665749999999996 - type: mrr_at_5 value: 35.00916666666667 - type: ndcg_at_1 value: 27.850916666666663 - type: ndcg_at_10 value: 37.47625 - type: ndcg_at_100 value: 42.74433333333334 - type: ndcg_at_1000 value: 45.21991666666667 - type: ndcg_at_3 value: 32.70916666666667 - type: ndcg_at_5 value: 34.80658333333333 - type: precision_at_1 value: 27.850916666666663 - type: precision_at_10 value: 6.5761666666666665 - type: precision_at_100 value: 1.0879999999999999 - type: precision_at_1000 value: 0.15058333333333332 - type: precision_at_3 value: 14.933833333333336 - type: precision_at_5 value: 10.607249999999999 - type: recall_at_1 value: 23.825583333333334 - type: recall_at_10 value: 49.100500000000004 - type: recall_at_100 value: 72.21133333333334 - type: recall_at_1000 value: 89.34791666666666 - type: recall_at_3 value: 35.90525 - type: recall_at_5 value: 41.24583333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.343 - type: map_at_10 value: 27.313 - type: map_at_100 value: 28.316999999999997 - type: map_at_1000 value: 28.406 - type: map_at_3 value: 25.06 - type: map_at_5 value: 26.409 - type: mrr_at_1 value: 23.313 - type: mrr_at_10 value: 29.467 - type: mrr_at_100 value: 30.348999999999997 - type: mrr_at_1000 value: 30.42 - type: mrr_at_3 value: 27.173000000000002 - type: mrr_at_5 value: 28.461 - type: ndcg_at_1 value: 23.313 - type: ndcg_at_10 value: 31.183 - type: ndcg_at_100 value: 36.252 - type: ndcg_at_1000 value: 38.582 - type: ndcg_at_3 value: 26.838 - type: ndcg_at_5 value: 29.042 - type: precision_at_1 value: 23.313 - type: precision_at_10 value: 4.9079999999999995 - type: precision_at_100 value: 0.808 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 11.299 - type: precision_at_5 value: 8.097999999999999 - type: recall_at_1 value: 21.343 - type: recall_at_10 value: 41.047 - type: recall_at_100 value: 64.372 - type: recall_at_1000 value: 81.499 - type: recall_at_3 value: 29.337000000000003 - type: recall_at_5 value: 34.756 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.595 - type: map_at_10 value: 23.433 - type: map_at_100 value: 24.578 - type: map_at_1000 value: 24.709999999999997 - type: map_at_3 value: 21.268 - type: map_at_5 value: 22.393 - type: mrr_at_1 value: 20.131 - type: mrr_at_10 value: 27.026 - type: mrr_at_100 value: 28.003 - type: mrr_at_1000 value: 28.083999999999996 - type: mrr_at_3 value: 24.966 - type: mrr_at_5 value: 26.064999999999998 - type: ndcg_at_1 value: 20.131 - type: ndcg_at_10 value: 27.846 - type: ndcg_at_100 value: 33.318999999999996 - type: ndcg_at_1000 value: 36.403 - type: ndcg_at_3 value: 23.883 - type: ndcg_at_5 value: 25.595000000000002 - type: precision_at_1 value: 20.131 - type: precision_at_10 value: 5.034000000000001 - type: precision_at_100 value: 0.9079999999999999 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 11.23 - type: precision_at_5 value: 8.032 - type: recall_at_1 value: 16.595 - type: recall_at_10 value: 37.576 - type: recall_at_100 value: 62.044 - type: recall_at_1000 value: 83.97 - type: recall_at_3 value: 26.631 - type: recall_at_5 value: 31.002000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.85 - type: map_at_10 value: 32.762 - type: map_at_100 value: 33.896 - type: map_at_1000 value: 34.006 - type: map_at_3 value: 29.965000000000003 - type: map_at_5 value: 31.485999999999997 - type: mrr_at_1 value: 28.731 - type: mrr_at_10 value: 36.504999999999995 - type: mrr_at_100 value: 37.364999999999995 - type: mrr_at_1000 value: 37.431 - type: mrr_at_3 value: 34.033 - type: mrr_at_5 value: 35.4 - type: ndcg_at_1 value: 28.731 - type: ndcg_at_10 value: 37.788 - type: ndcg_at_100 value: 43.1 - type: ndcg_at_1000 value: 45.623999999999995 - type: ndcg_at_3 value: 32.717 - type: ndcg_at_5 value: 35.024 - type: precision_at_1 value: 28.731 - type: precision_at_10 value: 6.371 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 14.521 - type: precision_at_5 value: 10.41 - type: recall_at_1 value: 24.85 - type: recall_at_10 value: 49.335 - type: recall_at_100 value: 72.792 - type: recall_at_1000 value: 90.525 - type: recall_at_3 value: 35.698 - type: recall_at_5 value: 41.385 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.016000000000002 - type: map_at_10 value: 32.126 - type: map_at_100 value: 33.786 - type: map_at_1000 value: 34.012 - type: map_at_3 value: 29.256 - type: map_at_5 value: 30.552 - type: mrr_at_1 value: 27.272999999999996 - type: mrr_at_10 value: 35.967 - type: mrr_at_100 value: 37.082 - type: mrr_at_1000 value: 37.146 - type: mrr_at_3 value: 33.531 - type: mrr_at_5 value: 34.697 - type: ndcg_at_1 value: 27.272999999999996 - type: ndcg_at_10 value: 37.945 - type: ndcg_at_100 value: 43.928 - type: ndcg_at_1000 value: 46.772999999999996 - type: ndcg_at_3 value: 33.111000000000004 - type: ndcg_at_5 value: 34.794000000000004 - type: precision_at_1 value: 27.272999999999996 - type: precision_at_10 value: 7.53 - type: precision_at_100 value: 1.512 - type: precision_at_1000 value: 0.241 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.146 - type: recall_at_1 value: 23.016000000000002 - type: recall_at_10 value: 49.576 - type: recall_at_100 value: 75.74600000000001 - type: recall_at_1000 value: 94.069 - type: recall_at_3 value: 35.964 - type: recall_at_5 value: 40.455999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.742 - type: map_at_10 value: 29.232000000000003 - type: map_at_100 value: 30.160999999999998 - type: map_at_1000 value: 30.278 - type: map_at_3 value: 27.134999999999998 - type: map_at_5 value: 27.932000000000002 - type: mrr_at_1 value: 24.399 - type: mrr_at_10 value: 31.048 - type: mrr_at_100 value: 31.912000000000003 - type: mrr_at_1000 value: 31.999 - type: mrr_at_3 value: 29.144 - type: mrr_at_5 value: 29.809 - type: ndcg_at_1 value: 24.399 - type: ndcg_at_10 value: 33.354 - type: ndcg_at_100 value: 38.287 - type: ndcg_at_1000 value: 41.105000000000004 - type: ndcg_at_3 value: 29.112 - type: ndcg_at_5 value: 30.379 - type: precision_at_1 value: 24.399 - type: precision_at_10 value: 5.157 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 11.892 - type: precision_at_5 value: 8.022 - type: recall_at_1 value: 22.742 - type: recall_at_10 value: 44.31 - type: recall_at_100 value: 67.422 - type: recall_at_1000 value: 88.193 - type: recall_at_3 value: 32.705 - type: recall_at_5 value: 35.669000000000004 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 9.067 - type: map_at_10 value: 14.821000000000002 - type: map_at_100 value: 16.195 - type: map_at_1000 value: 16.359 - type: map_at_3 value: 12.666 - type: map_at_5 value: 13.675999999999998 - type: mrr_at_1 value: 20.326 - type: mrr_at_10 value: 29.798000000000002 - type: mrr_at_100 value: 30.875000000000004 - type: mrr_at_1000 value: 30.928 - type: mrr_at_3 value: 26.678 - type: mrr_at_5 value: 28.433000000000003 - type: ndcg_at_1 value: 20.326 - type: ndcg_at_10 value: 21.477 - type: ndcg_at_100 value: 27.637 - type: ndcg_at_1000 value: 30.953000000000003 - type: ndcg_at_3 value: 17.456 - type: ndcg_at_5 value: 18.789 - type: precision_at_1 value: 20.326 - type: precision_at_10 value: 6.482 - type: precision_at_100 value: 1.302 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 12.53 - type: precision_at_5 value: 9.603 - type: recall_at_1 value: 9.067 - type: recall_at_10 value: 26.246000000000002 - type: recall_at_100 value: 47.837 - type: recall_at_1000 value: 66.637 - type: recall_at_3 value: 16.468 - type: recall_at_5 value: 20.088 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 7.563000000000001 - type: map_at_10 value: 15.22 - type: map_at_100 value: 20.048 - type: map_at_1000 value: 21.17 - type: map_at_3 value: 11.627 - type: map_at_5 value: 13.239 - type: mrr_at_1 value: 56.25 - type: mrr_at_10 value: 64.846 - type: mrr_at_100 value: 65.405 - type: mrr_at_1000 value: 65.41799999999999 - type: mrr_at_3 value: 63.125 - type: mrr_at_5 value: 64.1 - type: ndcg_at_1 value: 45.0 - type: ndcg_at_10 value: 32.437 - type: ndcg_at_100 value: 35.483 - type: ndcg_at_1000 value: 42.186 - type: ndcg_at_3 value: 37.297000000000004 - type: ndcg_at_5 value: 34.697 - type: precision_at_1 value: 56.25 - type: precision_at_10 value: 25.15 - type: precision_at_100 value: 7.539999999999999 - type: precision_at_1000 value: 1.678 - type: precision_at_3 value: 40.666999999999994 - type: precision_at_5 value: 33.45 - type: recall_at_1 value: 7.563000000000001 - type: recall_at_10 value: 19.969 - type: recall_at_100 value: 40.113 - type: recall_at_1000 value: 61.72299999999999 - type: recall_at_3 value: 12.950999999999999 - type: recall_at_5 value: 15.690999999999999 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 44.675000000000004 - type: f1 value: 40.779372586075105 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 57.406 - type: map_at_10 value: 67.69500000000001 - type: map_at_100 value: 68.08 - type: map_at_1000 value: 68.095 - type: map_at_3 value: 65.688 - type: map_at_5 value: 66.93 - type: mrr_at_1 value: 61.941 - type: mrr_at_10 value: 72.513 - type: mrr_at_100 value: 72.83699999999999 - type: mrr_at_1000 value: 72.844 - type: mrr_at_3 value: 70.60499999999999 - type: mrr_at_5 value: 71.807 - type: ndcg_at_1 value: 61.941 - type: ndcg_at_10 value: 73.29 - type: ndcg_at_100 value: 74.96300000000001 - type: ndcg_at_1000 value: 75.28200000000001 - type: ndcg_at_3 value: 69.491 - type: ndcg_at_5 value: 71.573 - type: precision_at_1 value: 61.941 - type: precision_at_10 value: 9.388 - type: precision_at_100 value: 1.0290000000000001 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 27.423 - type: precision_at_5 value: 17.627000000000002 - type: recall_at_1 value: 57.406 - type: recall_at_10 value: 85.975 - type: recall_at_100 value: 93.29899999999999 - type: recall_at_1000 value: 95.531 - type: recall_at_3 value: 75.624 - type: recall_at_5 value: 80.78999999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 16.314999999999998 - type: map_at_10 value: 26.678 - type: map_at_100 value: 28.322000000000003 - type: map_at_1000 value: 28.519 - type: map_at_3 value: 23.105 - type: map_at_5 value: 24.808 - type: mrr_at_1 value: 33.333 - type: mrr_at_10 value: 41.453 - type: mrr_at_100 value: 42.339 - type: mrr_at_1000 value: 42.39 - type: mrr_at_3 value: 38.863 - type: mrr_at_5 value: 40.159 - type: ndcg_at_1 value: 33.333 - type: ndcg_at_10 value: 34.062 - type: ndcg_at_100 value: 40.595 - type: ndcg_at_1000 value: 44.124 - type: ndcg_at_3 value: 30.689 - type: ndcg_at_5 value: 31.255 - type: precision_at_1 value: 33.333 - type: precision_at_10 value: 9.722 - type: precision_at_100 value: 1.6480000000000001 - type: precision_at_1000 value: 0.22699999999999998 - type: precision_at_3 value: 20.936 - type: precision_at_5 value: 15.154 - type: recall_at_1 value: 16.314999999999998 - type: recall_at_10 value: 41.221000000000004 - type: recall_at_100 value: 65.857 - type: recall_at_1000 value: 87.327 - type: recall_at_3 value: 27.435 - type: recall_at_5 value: 32.242 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 31.978 - type: map_at_10 value: 43.784 - type: map_at_100 value: 44.547 - type: map_at_1000 value: 44.614 - type: map_at_3 value: 41.317 - type: map_at_5 value: 42.812 - type: mrr_at_1 value: 63.956999999999994 - type: mrr_at_10 value: 70.502 - type: mrr_at_100 value: 70.845 - type: mrr_at_1000 value: 70.865 - type: mrr_at_3 value: 69.192 - type: mrr_at_5 value: 69.994 - type: ndcg_at_1 value: 63.956999999999994 - type: ndcg_at_10 value: 52.782 - type: ndcg_at_100 value: 55.78999999999999 - type: ndcg_at_1000 value: 57.289 - type: ndcg_at_3 value: 48.864000000000004 - type: ndcg_at_5 value: 50.964 - type: precision_at_1 value: 63.956999999999994 - type: precision_at_10 value: 10.809000000000001 - type: precision_at_100 value: 1.319 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 30.2 - type: precision_at_5 value: 19.787 - type: recall_at_1 value: 31.978 - type: recall_at_10 value: 54.045 - type: recall_at_100 value: 65.928 - type: recall_at_1000 value: 75.976 - type: recall_at_3 value: 45.300000000000004 - type: recall_at_5 value: 49.467 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 63.8708 - type: ap value: 59.02002684158838 - type: f1 value: 63.650055896985315 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 19.834 - type: map_at_10 value: 31.317 - type: map_at_100 value: 32.576 - type: map_at_1000 value: 32.631 - type: map_at_3 value: 27.728 - type: map_at_5 value: 29.720000000000002 - type: mrr_at_1 value: 20.43 - type: mrr_at_10 value: 31.868999999999996 - type: mrr_at_100 value: 33.074999999999996 - type: mrr_at_1000 value: 33.123999999999995 - type: mrr_at_3 value: 28.333000000000002 - type: mrr_at_5 value: 30.305 - type: ndcg_at_1 value: 20.43 - type: ndcg_at_10 value: 37.769000000000005 - type: ndcg_at_100 value: 43.924 - type: ndcg_at_1000 value: 45.323 - type: ndcg_at_3 value: 30.422 - type: ndcg_at_5 value: 33.98 - type: precision_at_1 value: 20.43 - type: precision_at_10 value: 6.027 - type: precision_at_100 value: 0.9119999999999999 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.985 - type: precision_at_5 value: 9.593 - type: recall_at_1 value: 19.834 - type: recall_at_10 value: 57.647000000000006 - type: recall_at_100 value: 86.276 - type: recall_at_1000 value: 97.065 - type: recall_at_3 value: 37.616 - type: recall_at_5 value: 46.171 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.52530779753762 - type: f1 value: 91.4004687820246 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 72.82717738258093 - type: f1 value: 56.791387113030346 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.09280430396772 - type: f1 value: 68.92843467363518 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.2542030934768 - type: f1 value: 76.22211319699834 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 29.604407852989457 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 25.011863718751183 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.55552172383111 - type: mrr value: 32.65475731770242 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 4.968 - type: map_at_10 value: 10.703999999999999 - type: map_at_100 value: 13.316 - type: map_at_1000 value: 14.674000000000001 - type: map_at_3 value: 7.809000000000001 - type: map_at_5 value: 9.268 - type: mrr_at_1 value: 41.796 - type: mrr_at_10 value: 50.558 - type: mrr_at_100 value: 51.125 - type: mrr_at_1000 value: 51.184 - type: mrr_at_3 value: 48.349 - type: mrr_at_5 value: 49.572 - type: ndcg_at_1 value: 39.783 - type: ndcg_at_10 value: 30.375999999999998 - type: ndcg_at_100 value: 27.648 - type: ndcg_at_1000 value: 36.711 - type: ndcg_at_3 value: 35.053 - type: ndcg_at_5 value: 33.278999999999996 - type: precision_at_1 value: 41.796 - type: precision_at_10 value: 22.663 - type: precision_at_100 value: 7.210999999999999 - type: precision_at_1000 value: 1.984 - type: precision_at_3 value: 33.127 - type: precision_at_5 value: 29.102 - type: recall_at_1 value: 4.968 - type: recall_at_10 value: 14.469999999999999 - type: recall_at_100 value: 28.188000000000002 - type: recall_at_1000 value: 60.769 - type: recall_at_3 value: 8.737 - type: recall_at_5 value: 11.539000000000001 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 26.958 - type: map_at_10 value: 40.6 - type: map_at_100 value: 41.754000000000005 - type: map_at_1000 value: 41.792 - type: map_at_3 value: 36.521 - type: map_at_5 value: 38.866 - type: mrr_at_1 value: 30.330000000000002 - type: mrr_at_10 value: 43.013 - type: mrr_at_100 value: 43.89 - type: mrr_at_1000 value: 43.917 - type: mrr_at_3 value: 39.489000000000004 - type: mrr_at_5 value: 41.504999999999995 - type: ndcg_at_1 value: 30.330000000000002 - type: ndcg_at_10 value: 47.878 - type: ndcg_at_100 value: 52.761 - type: ndcg_at_1000 value: 53.69500000000001 - type: ndcg_at_3 value: 40.061 - type: ndcg_at_5 value: 43.980000000000004 - type: precision_at_1 value: 30.330000000000002 - type: precision_at_10 value: 8.048 - type: precision_at_100 value: 1.076 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 18.299000000000003 - type: precision_at_5 value: 13.25 - type: recall_at_1 value: 26.958 - type: recall_at_10 value: 67.72399999999999 - type: recall_at_100 value: 89.02600000000001 - type: recall_at_1000 value: 96.029 - type: recall_at_3 value: 47.332 - type: recall_at_5 value: 56.36600000000001 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 69.926 - type: map_at_10 value: 83.797 - type: map_at_100 value: 84.42699999999999 - type: map_at_1000 value: 84.446 - type: map_at_3 value: 80.78 - type: map_at_5 value: 82.669 - type: mrr_at_1 value: 80.44 - type: mrr_at_10 value: 86.79 - type: mrr_at_100 value: 86.90299999999999 - type: mrr_at_1000 value: 86.904 - type: mrr_at_3 value: 85.753 - type: mrr_at_5 value: 86.478 - type: ndcg_at_1 value: 80.44 - type: ndcg_at_10 value: 87.634 - type: ndcg_at_100 value: 88.9 - type: ndcg_at_1000 value: 89.03 - type: ndcg_at_3 value: 84.622 - type: ndcg_at_5 value: 86.29 - type: precision_at_1 value: 80.44 - type: precision_at_10 value: 13.305 - type: precision_at_100 value: 1.524 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 36.957 - type: precision_at_5 value: 24.328 - type: recall_at_1 value: 69.926 - type: recall_at_10 value: 94.99300000000001 - type: recall_at_100 value: 99.345 - type: recall_at_1000 value: 99.97 - type: recall_at_3 value: 86.465 - type: recall_at_5 value: 91.121 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.850644235471144 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 52.547875398320734 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.328 - type: map_at_10 value: 10.479 - type: map_at_100 value: 12.25 - type: map_at_1000 value: 12.522 - type: map_at_3 value: 7.548000000000001 - type: map_at_5 value: 9.039 - type: mrr_at_1 value: 21.3 - type: mrr_at_10 value: 30.678 - type: mrr_at_100 value: 31.77 - type: mrr_at_1000 value: 31.831 - type: mrr_at_3 value: 27.500000000000004 - type: mrr_at_5 value: 29.375 - type: ndcg_at_1 value: 21.3 - type: ndcg_at_10 value: 17.626 - type: ndcg_at_100 value: 25.03 - type: ndcg_at_1000 value: 30.055 - type: ndcg_at_3 value: 16.744999999999997 - type: ndcg_at_5 value: 14.729999999999999 - type: precision_at_1 value: 21.3 - type: precision_at_10 value: 9.09 - type: precision_at_100 value: 1.989 - type: precision_at_1000 value: 0.32 - type: precision_at_3 value: 15.467 - type: precision_at_5 value: 12.879999999999999 - type: recall_at_1 value: 4.328 - type: recall_at_10 value: 18.412 - type: recall_at_100 value: 40.363 - type: recall_at_1000 value: 64.997 - type: recall_at_3 value: 9.408 - type: recall_at_5 value: 13.048000000000002 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.1338589503896 - type: cos_sim_spearman value: 79.1378154534123 - type: euclidean_pearson value: 73.17857462509251 - type: euclidean_spearman value: 70.79268955610539 - type: manhattan_pearson value: 72.8280251705823 - type: manhattan_spearman value: 70.60323787229834 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.21604641858598 - type: cos_sim_spearman value: 75.06080146054282 - type: euclidean_pearson value: 69.44429285856924 - type: euclidean_spearman value: 58.240130690046456 - type: manhattan_pearson value: 69.07597314234852 - type: manhattan_spearman value: 58.08224335836159 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 80.2252849321165 - type: cos_sim_spearman value: 80.85907200101076 - type: euclidean_pearson value: 70.85619832878055 - type: euclidean_spearman value: 71.59417341887324 - type: manhattan_pearson value: 70.55842192345895 - type: manhattan_spearman value: 71.30332994715893 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.50469360654135 - type: cos_sim_spearman value: 76.12917164308409 - type: euclidean_pearson value: 70.4070213910491 - type: euclidean_spearman value: 66.97320451942113 - type: manhattan_pearson value: 70.24834290119863 - type: manhattan_spearman value: 66.9047074173091 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 84.70140350059746 - type: cos_sim_spearman value: 85.55427877110485 - type: euclidean_pearson value: 63.4780453371435 - type: euclidean_spearman value: 64.65485395077273 - type: manhattan_pearson value: 63.64869846572011 - type: manhattan_spearman value: 64.87219311596813 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 79.4416477676503 - type: cos_sim_spearman value: 81.2094925260351 - type: euclidean_pearson value: 68.372257553367 - type: euclidean_spearman value: 69.47792807911692 - type: manhattan_pearson value: 68.17773583183664 - type: manhattan_spearman value: 69.31505452732998 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.94688403351994 - type: cos_sim_spearman value: 88.97626967707933 - type: euclidean_pearson value: 74.09942728422159 - type: euclidean_spearman value: 72.91022362666948 - type: manhattan_pearson value: 74.11262432880199 - type: manhattan_spearman value: 72.82115894578564 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.42605802805606 - type: cos_sim_spearman value: 66.22330559222408 - type: euclidean_pearson value: 50.15272876367891 - type: euclidean_spearman value: 60.695400782452715 - type: manhattan_pearson value: 50.17076569264417 - type: manhattan_spearman value: 60.3761281869747 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.85939227596093 - type: cos_sim_spearman value: 82.57071649593358 - type: euclidean_pearson value: 72.18291316100125 - type: euclidean_spearman value: 70.70702024402348 - type: manhattan_pearson value: 72.36789718833687 - type: manhattan_spearman value: 70.92789721402387 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.31107201598611 - type: mrr value: 93.66321314850727 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 45.428000000000004 - type: map_at_10 value: 54.730000000000004 - type: map_at_100 value: 55.421 - type: map_at_1000 value: 55.47299999999999 - type: map_at_3 value: 52.333 - type: map_at_5 value: 53.72 - type: mrr_at_1 value: 48.333 - type: mrr_at_10 value: 56.601 - type: mrr_at_100 value: 57.106 - type: mrr_at_1000 value: 57.154 - type: mrr_at_3 value: 54.611 - type: mrr_at_5 value: 55.87800000000001 - type: ndcg_at_1 value: 48.333 - type: ndcg_at_10 value: 59.394999999999996 - type: ndcg_at_100 value: 62.549 - type: ndcg_at_1000 value: 63.941 - type: ndcg_at_3 value: 55.096000000000004 - type: ndcg_at_5 value: 57.325 - type: precision_at_1 value: 48.333 - type: precision_at_10 value: 8.1 - type: precision_at_100 value: 0.983 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 21.889 - type: precision_at_5 value: 14.533 - type: recall_at_1 value: 45.428000000000004 - type: recall_at_10 value: 71.806 - type: recall_at_100 value: 86.533 - type: recall_at_1000 value: 97.5 - type: recall_at_3 value: 60.228 - type: recall_at_5 value: 65.90599999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8029702970297 - type: cos_sim_ap value: 95.48085242816634 - type: cos_sim_f1 value: 89.86653484923382 - type: cos_sim_precision value: 88.85630498533725 - type: cos_sim_recall value: 90.9 - type: dot_accuracy value: 99.21881188118812 - type: dot_ap value: 55.14126603018576 - type: dot_f1 value: 55.22458628841608 - type: dot_precision value: 52.37668161434977 - type: dot_recall value: 58.4 - type: euclidean_accuracy value: 99.64356435643565 - type: euclidean_ap value: 84.52487064474103 - type: euclidean_f1 value: 80.53908355795149 - type: euclidean_precision value: 87.36842105263159 - type: euclidean_recall value: 74.7 - type: manhattan_accuracy value: 99.63861386138613 - type: manhattan_ap value: 84.1994288662172 - type: manhattan_f1 value: 80.38482095136291 - type: manhattan_precision value: 86.33754305396096 - type: manhattan_recall value: 75.2 - type: max_accuracy value: 99.8029702970297 - type: max_ap value: 95.48085242816634 - type: max_f1 value: 89.86653484923382 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 48.06508273111389 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.36169910951664 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.110601218420356 - type: mrr value: 50.90277777777777 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.63669555287747 - type: cos_sim_spearman value: 30.708042454053853 - type: dot_pearson value: 20.309025749838924 - type: dot_spearman value: 21.511758746817165 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.201 - type: map_at_10 value: 1.405 - type: map_at_100 value: 7.359999999999999 - type: map_at_1000 value: 17.858 - type: map_at_3 value: 0.494 - type: map_at_5 value: 0.757 - type: mrr_at_1 value: 74.0 - type: mrr_at_10 value: 84.89999999999999 - type: mrr_at_100 value: 84.89999999999999 - type: mrr_at_1000 value: 84.89999999999999 - type: mrr_at_3 value: 84.0 - type: mrr_at_5 value: 84.89999999999999 - type: ndcg_at_1 value: 68.0 - type: ndcg_at_10 value: 60.571 - type: ndcg_at_100 value: 46.016 - type: ndcg_at_1000 value: 41.277 - type: ndcg_at_3 value: 63.989 - type: ndcg_at_5 value: 61.41 - type: precision_at_1 value: 74.0 - type: precision_at_10 value: 65.2 - type: precision_at_100 value: 47.04 - type: precision_at_1000 value: 18.416 - type: precision_at_3 value: 68.0 - type: precision_at_5 value: 66.4 - type: recall_at_1 value: 0.201 - type: recall_at_10 value: 1.763 - type: recall_at_100 value: 11.008999999999999 - type: recall_at_1000 value: 38.509 - type: recall_at_3 value: 0.551 - type: recall_at_5 value: 0.881 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.4040000000000001 - type: map_at_10 value: 7.847999999999999 - type: map_at_100 value: 12.908 - type: map_at_1000 value: 14.37 - type: map_at_3 value: 3.6450000000000005 - type: map_at_5 value: 4.93 - type: mrr_at_1 value: 18.367 - type: mrr_at_10 value: 32.576 - type: mrr_at_100 value: 34.163 - type: mrr_at_1000 value: 34.18 - type: mrr_at_3 value: 28.571 - type: mrr_at_5 value: 30.918 - type: ndcg_at_1 value: 15.306000000000001 - type: ndcg_at_10 value: 18.59 - type: ndcg_at_100 value: 30.394 - type: ndcg_at_1000 value: 42.198 - type: ndcg_at_3 value: 18.099 - type: ndcg_at_5 value: 16.955000000000002 - type: precision_at_1 value: 16.326999999999998 - type: precision_at_10 value: 17.959 - type: precision_at_100 value: 6.755 - type: precision_at_1000 value: 1.4529999999999998 - type: precision_at_3 value: 20.408 - type: precision_at_5 value: 18.367 - type: recall_at_1 value: 1.4040000000000001 - type: recall_at_10 value: 14.048 - type: recall_at_100 value: 42.150999999999996 - type: recall_at_1000 value: 77.85600000000001 - type: recall_at_3 value: 4.819 - type: recall_at_5 value: 7.13 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 66.1456 - type: ap value: 11.631023858569064 - type: f1 value: 50.128196455722254 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.850594227504246 - type: f1 value: 56.82313689360827 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 38.060423744064764 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.43702688204088 - type: cos_sim_ap value: 68.30176948820142 - type: cos_sim_f1 value: 64.25430330443524 - type: cos_sim_precision value: 61.33365315423362 - type: cos_sim_recall value: 67.46701846965699 - type: dot_accuracy value: 77.76718126005842 - type: dot_ap value: 37.510516716176305 - type: dot_f1 value: 43.53859496964441 - type: dot_precision value: 32.428940568475454 - type: dot_recall value: 66.2269129287599 - type: euclidean_accuracy value: 82.10049472492102 - type: euclidean_ap value: 61.64354520687271 - type: euclidean_f1 value: 59.804144841721694 - type: euclidean_precision value: 52.604166666666664 - type: euclidean_recall value: 69.28759894459104 - type: manhattan_accuracy value: 82.22566609048101 - type: manhattan_ap value: 61.753431124879974 - type: manhattan_f1 value: 59.77735297424941 - type: manhattan_precision value: 52.0870076425632 - type: manhattan_recall value: 70.13192612137203 - type: max_accuracy value: 84.43702688204088 - type: max_ap value: 68.30176948820142 - type: max_f1 value: 64.25430330443524 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.81515116233942 - type: cos_sim_ap value: 85.33305785100573 - type: cos_sim_f1 value: 78.11202938475667 - type: cos_sim_precision value: 74.68567816253424 - type: cos_sim_recall value: 81.86787804126887 - type: dot_accuracy value: 82.50475414289595 - type: dot_ap value: 69.87015340174045 - type: dot_f1 value: 65.94174480373633 - type: dot_precision value: 61.40362525728703 - type: dot_recall value: 71.20418848167539 - type: euclidean_accuracy value: 83.05778709201692 - type: euclidean_ap value: 70.54206653977498 - type: euclidean_f1 value: 62.98969847356943 - type: euclidean_precision value: 61.55033063923585 - type: euclidean_recall value: 64.49799815214044 - type: manhattan_accuracy value: 83.0034540303489 - type: manhattan_ap value: 70.53997987198404 - type: manhattan_f1 value: 62.95875898600075 - type: manhattan_precision value: 61.89555125725339 - type: manhattan_recall value: 64.05913150600554 - type: max_accuracy value: 88.81515116233942 - type: max_ap value: 85.33305785100573 - type: max_f1 value: 78.11202938475667 --- ---

Jina AI: Your Search Foundation, Supercharged!

The text embedding set trained by Jina AI

## Intented Usage & Model Info `jina-embedding-b-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. With a standard size of 110 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following options: - [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters. - [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters - [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters **(you are here)**. - [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters. - `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon). - `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon). ## Data & Parameters Please checkout our [technical blog](https://arxiv.org/abs/2307.11224). ## Metrics We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |Name|param |dimension| |------------------------------|-----|------| |all-minilm-l6-v2|23m |384| |all-mpnet-base-v2 |110m |768| |ada-embedding-002|Unknown/OpenAI API |1536| |jina-embedding-t-en-v1|14m |312| |jina-embedding-s-en-v1|35m |512| |jina-embedding-b-en-v1|110m |768| |jina-embedding-l-en-v1|330m |1024| |Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |all-mpnet-base-v2|0.726|**0.835**|0.78 |0.857|0.8 |**0.906**|0.513 |0.875|0.656 | |ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** | |jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 | |jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 | |jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 | |jina-embedding-l-en-v1|0.745|0.832|**0.781**|**0.869**|0.837|0.902|0.573 |**0.881**|0.598 | ## Usage Usage with Jina AI Finetuner: ```python !pip install finetuner import finetuner model = finetuner.build_model('jinaai/jina-embedding-b-en-v1') embeddings = finetuner.encode( model=model, data=['how is the weather today', 'What is the current weather like today?'] ) print(finetuner.cos_sim(embeddings[0], embeddings[1])) ``` Use with sentence-transformers: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim sentences = ['how is the weather today', 'What is the current weather like today?'] model = SentenceTransformer('jinaai/jina-embedding-b-en-v1') embeddings = model.encode(sentences) print(cos_sim(embeddings[0], embeddings[1])) ``` ## Fine-tuning Please consider [Finetuner](https://github.com/jina-ai/finetuner). ## Plans 1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length. 2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find Jina Embeddings useful in your research, please cite the following paper: ``` latex @misc{günther2023jina, title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models}, author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao}, year={2023}, eprint={2307.11224}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```