Upload folder using huggingface_hub
Browse files- artifact.metadata +60 -0
- config.json +35 -0
- configuration_bert.py +168 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
artifact.metadata
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"query_token_id": "[unused0]",
|
| 3 |
+
"doc_token_id": "[unused1]",
|
| 4 |
+
"query_token": "[Q]",
|
| 5 |
+
"doc_token": "[D]",
|
| 6 |
+
"ncells": null,
|
| 7 |
+
"centroid_score_threshold": null,
|
| 8 |
+
"ndocs": null,
|
| 9 |
+
"load_index_with_mmap": false,
|
| 10 |
+
"index_path": null,
|
| 11 |
+
"nbits": 1,
|
| 12 |
+
"kmeans_niters": 4,
|
| 13 |
+
"resume": false,
|
| 14 |
+
"similarity": "cosine",
|
| 15 |
+
"bsize": 8,
|
| 16 |
+
"accumsteps": 1,
|
| 17 |
+
"lr": 1e-5,
|
| 18 |
+
"maxsteps": 400000,
|
| 19 |
+
"save_every": null,
|
| 20 |
+
"warmup": 20000,
|
| 21 |
+
"warmup_bert": null,
|
| 22 |
+
"relu": false,
|
| 23 |
+
"nway": 64,
|
| 24 |
+
"use_ib_negatives": true,
|
| 25 |
+
"reranker": false,
|
| 26 |
+
"distillation_alpha": 1.0,
|
| 27 |
+
"ignore_scores": false,
|
| 28 |
+
"model_name": null,
|
| 29 |
+
"query_maxlen": 32,
|
| 30 |
+
"attend_to_mask_tokens": false,
|
| 31 |
+
"interaction": "colbert",
|
| 32 |
+
"dim": 128,
|
| 33 |
+
"doc_maxlen": 160,
|
| 34 |
+
"mask_punctuation": true,
|
| 35 |
+
"checkpoint": "experiments\/msmarco\/none\/triples.train.round2.bs=32.nway=64.ib.distilled\/checkpoints\/colbert-200000",
|
| 36 |
+
"triples": "data\/MSMARCO\/colbertv2.train.json",
|
| 37 |
+
"collection": "data\/MSMARCO\/collection.tsv",
|
| 38 |
+
"queries": "data\/MSMARCO\/queries.train.tsv",
|
| 39 |
+
"index_name": null,
|
| 40 |
+
"trust_remote_code": true,
|
| 41 |
+
"overwrite": false,
|
| 42 |
+
"root": "\/home\/qliu\/workspace\/ColBERT\/experiments",
|
| 43 |
+
"experiment": "msmarco",
|
| 44 |
+
"index_root": null,
|
| 45 |
+
"name": "triples.train.round3.bs=32.nway=64.ib.distilled",
|
| 46 |
+
"rank": 0,
|
| 47 |
+
"nranks": 4,
|
| 48 |
+
"amp": true,
|
| 49 |
+
"gpus": 4,
|
| 50 |
+
"avoid_fork_if_possible": false,
|
| 51 |
+
"meta": {
|
| 52 |
+
"hostname": "andromeda-1",
|
| 53 |
+
"git_branch": "dev",
|
| 54 |
+
"git_hash": "8fb3abbeead17c506a323de7108603d559c061b1",
|
| 55 |
+
"git_commit_datetime": "2024-01-28 19:43:25+01:00",
|
| 56 |
+
"current_datetime": "Feb 07, 2024 ; 2:30AM CET (+0100)",
|
| 57 |
+
"cmd": "\/home\/qliu\/workspace\/ColBERT\/colbert\/train.py",
|
| 58 |
+
"version": "colbert-v0.4"
|
| 59 |
+
}
|
| 60 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "experiments/msmarco/none/triples.train.round2.bs=32.nway=64.ib.distilled/checkpoints/colbert-200000",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"HF_ColBERT"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"attn_implementation": null,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_bert.JinaBertConfig",
|
| 10 |
+
"AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
|
| 11 |
+
"AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
|
| 12 |
+
"AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
|
| 13 |
+
},
|
| 14 |
+
"classifier_dropout": null,
|
| 15 |
+
"emb_pooler": "mean",
|
| 16 |
+
"feed_forward_type": "geglu",
|
| 17 |
+
"gradient_checkpointing": false,
|
| 18 |
+
"hidden_act": "gelu",
|
| 19 |
+
"hidden_dropout_prob": 0.1,
|
| 20 |
+
"hidden_size": 768,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 3072,
|
| 23 |
+
"layer_norm_eps": 1e-12,
|
| 24 |
+
"max_position_embeddings": 8192,
|
| 25 |
+
"model_type": "bert",
|
| 26 |
+
"num_attention_heads": 12,
|
| 27 |
+
"num_hidden_layers": 12,
|
| 28 |
+
"pad_token_id": 0,
|
| 29 |
+
"position_embedding_type": "alibi",
|
| 30 |
+
"torch_dtype": "float32",
|
| 31 |
+
"transformers_version": "4.37.2",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 30528
|
| 35 |
+
}
|
configuration_bert.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
# Copyright (c) 2023 Jina AI GmbH. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
""" BERT model configuration"""
|
| 18 |
+
from collections import OrderedDict
|
| 19 |
+
from typing import Mapping
|
| 20 |
+
|
| 21 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 22 |
+
from transformers.onnx import OnnxConfig
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class JinaBertConfig(PretrainedConfig):
|
| 30 |
+
r"""
|
| 31 |
+
This is the configuration class to store the configuration of a [`JinaBertModel`]. It is used to
|
| 32 |
+
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
|
| 33 |
+
configuration with the defaults will yield a similar configuration to that of the BERT
|
| 34 |
+
[bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.
|
| 35 |
+
|
| 36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 37 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 42 |
+
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
| 43 |
+
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
| 44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 46 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 47 |
+
Number of hidden layers in the Transformer encoder.
|
| 48 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 50 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 52 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
| 53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 58 |
+
The dropout ratio for the attention probabilities.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 62 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 63 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 67 |
+
The epsilon used by the layer normalization layers.
|
| 68 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
| 69 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
| 70 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
| 71 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
| 72 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
| 73 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
| 74 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
| 75 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
| 76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 78 |
+
relevant if `config.is_decoder=True`.
|
| 79 |
+
classifier_dropout (`float`, *optional*):
|
| 80 |
+
The dropout ratio for the classification head.
|
| 81 |
+
feed_forward_type (`str`, *optional*, defaults to `"original"`):
|
| 82 |
+
The type of feed forward layer to use in the bert layers.
|
| 83 |
+
Can be one of GLU variants, e.g. `"reglu"`, `"geglu"`
|
| 84 |
+
emb_pooler (`str`, *optional*, defaults to `None`):
|
| 85 |
+
The function to use for pooling the last layer embeddings to get the sentence embeddings.
|
| 86 |
+
Should be one of `None`, `"mean"`.
|
| 87 |
+
attn_implementation (`str`, *optional*, defaults to `"torch"`):
|
| 88 |
+
The implementation of the self-attention layer. Can be one of:
|
| 89 |
+
- `None` for the original implementation,
|
| 90 |
+
- `torch` for the PyTorch SDPA implementation,
|
| 91 |
+
|
| 92 |
+
Examples:
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
>>> from transformers import JinaBertConfig, JinaBertModel
|
| 96 |
+
|
| 97 |
+
>>> # Initializing a JinaBert configuration
|
| 98 |
+
>>> configuration = JinaBertConfig()
|
| 99 |
+
|
| 100 |
+
>>> # Initializing a model (with random weights) from the configuration
|
| 101 |
+
>>> model = JinaBertModel(configuration)
|
| 102 |
+
|
| 103 |
+
>>> # Accessing the model configuration
|
| 104 |
+
>>> configuration = model.config
|
| 105 |
+
|
| 106 |
+
>>> # Encode text inputs
|
| 107 |
+
>>> embeddings = model.encode(text_inputs)
|
| 108 |
+
```"""
|
| 109 |
+
model_type = "bert"
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
vocab_size=30522,
|
| 114 |
+
hidden_size=768,
|
| 115 |
+
num_hidden_layers=12,
|
| 116 |
+
num_attention_heads=12,
|
| 117 |
+
intermediate_size=3072,
|
| 118 |
+
hidden_act="gelu",
|
| 119 |
+
hidden_dropout_prob=0.1,
|
| 120 |
+
attention_probs_dropout_prob=0.1,
|
| 121 |
+
max_position_embeddings=512,
|
| 122 |
+
type_vocab_size=2,
|
| 123 |
+
initializer_range=0.02,
|
| 124 |
+
layer_norm_eps=1e-12,
|
| 125 |
+
pad_token_id=0,
|
| 126 |
+
position_embedding_type="absolute",
|
| 127 |
+
use_cache=True,
|
| 128 |
+
classifier_dropout=None,
|
| 129 |
+
feed_forward_type="original",
|
| 130 |
+
emb_pooler=None,
|
| 131 |
+
attn_implementation='torch',
|
| 132 |
+
**kwargs,
|
| 133 |
+
):
|
| 134 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 135 |
+
|
| 136 |
+
self.vocab_size = vocab_size
|
| 137 |
+
self.hidden_size = hidden_size
|
| 138 |
+
self.num_hidden_layers = num_hidden_layers
|
| 139 |
+
self.num_attention_heads = num_attention_heads
|
| 140 |
+
self.hidden_act = hidden_act
|
| 141 |
+
self.intermediate_size = intermediate_size
|
| 142 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 143 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 144 |
+
self.max_position_embeddings = max_position_embeddings
|
| 145 |
+
self.type_vocab_size = type_vocab_size
|
| 146 |
+
self.initializer_range = initializer_range
|
| 147 |
+
self.layer_norm_eps = layer_norm_eps
|
| 148 |
+
self.position_embedding_type = position_embedding_type
|
| 149 |
+
self.use_cache = use_cache
|
| 150 |
+
self.classifier_dropout = classifier_dropout
|
| 151 |
+
self.feed_forward_type = feed_forward_type
|
| 152 |
+
self.emb_pooler = emb_pooler
|
| 153 |
+
self.attn_implementation = attn_implementation
|
| 154 |
+
|
| 155 |
+
class JinaBertOnnxConfig(OnnxConfig):
|
| 156 |
+
@property
|
| 157 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 158 |
+
if self.task == "multiple-choice":
|
| 159 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
| 160 |
+
else:
|
| 161 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
| 162 |
+
return OrderedDict(
|
| 163 |
+
[
|
| 164 |
+
("input_ids", dynamic_axis),
|
| 165 |
+
("attention_mask", dynamic_axis),
|
| 166 |
+
("token_type_ids", dynamic_axis),
|
| 167 |
+
]
|
| 168 |
+
)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a1d4dfaebf3eb111bd01bebd765edcbebe2613b1f8e80a50c3ca2593a5a78e4
|
| 3 |
+
size 549888200
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 8192,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|