feat: added LoRA
Browse files- modeling_lora.py +115 -0
modeling_lora.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
from typing import Iterator, Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torch.nn.utils.parametrize as parametrize
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
from torch.nn import Parameter
|
| 10 |
+
|
| 11 |
+
from .modeling_bert import BertModel, BertPreTrainedModel, JinaBertConfig
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class LoRAParametrization(nn.Module):
|
| 15 |
+
def __init__(self, fan_in, fan_out, fan_in_fan_out=False, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
| 16 |
+
super().__init__()
|
| 17 |
+
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
| 18 |
+
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
|
| 19 |
+
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
|
| 20 |
+
lora_A_data = []
|
| 21 |
+
for _ in range(num_adaptions):
|
| 22 |
+
new_adaption = torch.zeros(self.swap((rank, fan_in)))
|
| 23 |
+
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
| 24 |
+
lora_A_data.append(new_adaption)
|
| 25 |
+
lora_A_data = torch.stack(lora_A_data, dim=0)
|
| 26 |
+
self.lora_A = nn.Parameter(lora_A_data)
|
| 27 |
+
self.lora_B = nn.Parameter(torch.zeros((num_adaptions, *self.swap((fan_out, rank)))))
|
| 28 |
+
self.lora_alpha, self.rank = lora_alpha, rank
|
| 29 |
+
self.scaling = lora_alpha / rank
|
| 30 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout_p) if lora_dropout_p > 0 else lambda x: x
|
| 31 |
+
self.dropout_fn = self._dropout if lora_dropout_p > 0 else lambda x: x
|
| 32 |
+
self.register_buffer("lora_dropout_mask", torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype), persistent=False)
|
| 33 |
+
self.forward_fn = lambda x: x
|
| 34 |
+
self.current_task = None
|
| 35 |
+
|
| 36 |
+
def _dropout(self, A):
|
| 37 |
+
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
|
| 38 |
+
return A * self.lora_dropout(self.lora_dropout_mask)
|
| 39 |
+
|
| 40 |
+
def lora_forward(self, X):
|
| 41 |
+
assert self.current_task is not None
|
| 42 |
+
return X + torch.matmul(*self.swap((self.lora_B[self.current_task], self.dropout_fn(self.lora_A[self.current_task])))).view(X.shape) * self.scaling
|
| 43 |
+
|
| 44 |
+
def forward(self, X):
|
| 45 |
+
return self.forward_fn(X)
|
| 46 |
+
|
| 47 |
+
def select_task(self, task=None):
|
| 48 |
+
self.current_task = task
|
| 49 |
+
if task is None:
|
| 50 |
+
self.forward_fn = lambda x: x
|
| 51 |
+
else:
|
| 52 |
+
self.forward_fn = self.lora_forward
|
| 53 |
+
|
| 54 |
+
@classmethod
|
| 55 |
+
def from_linear(cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
| 56 |
+
fan_out, fan_in = layer.weight.shape
|
| 57 |
+
return cls(
|
| 58 |
+
fan_in, fan_out, num_adaptions=num_adaptions, fan_in_fan_out=False, rank=rank, lora_dropout_p=lora_dropout_p, lora_alpha=lora_alpha
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
@classmethod
|
| 62 |
+
def from_embedding(cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
| 63 |
+
fan_in, fan_out = layer.weight.shape
|
| 64 |
+
return cls(
|
| 65 |
+
fan_in, fan_out, num_adaptions=num_adaptions, fan_in_fan_out=True, rank=rank, lora_dropout_p=lora_dropout_p, lora_alpha=lora_alpha
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
@classmethod
|
| 69 |
+
def add_to_layer(cls, layer, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
| 70 |
+
if isinstance(layer, nn.Linear):
|
| 71 |
+
parametrize.register_parametrization(layer, "weight", cls.from_linear(layer, num_adaptions=num_adaptions, rank=rank, lora_dropout_p=lora_dropout_p, lora_alpha=lora_alpha))
|
| 72 |
+
elif isinstance(layer, nn.Embedding):
|
| 73 |
+
parametrize.register_parametrization(layer, "weight", cls.from_embedding(layer, num_adaptions=num_adaptions, rank=rank, lora_dropout_p=lora_dropout_p, lora_alpha=lora_alpha))
|
| 74 |
+
|
| 75 |
+
@classmethod
|
| 76 |
+
def select_task_for_layer(cls, layer, task_idx=None):
|
| 77 |
+
if isinstance(layer, LoRAParametrization):
|
| 78 |
+
layer.select_task(task_idx)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class BertLoRA(BertPreTrainedModel):
|
| 82 |
+
def __init__(self, config: JinaBertConfig, add_pooling_layer=True, num_adaptions=1):
|
| 83 |
+
super().__init__(config)
|
| 84 |
+
self.bert = BertModel(config, add_pooling_layer=add_pooling_layer)
|
| 85 |
+
self._register_lora(num_adaptions)
|
| 86 |
+
for name, param in super().named_parameters():
|
| 87 |
+
if 'lora' not in name:
|
| 88 |
+
param.requires_grad_(False)
|
| 89 |
+
|
| 90 |
+
def from_bert(self, *args, num_adaptions=1, **kwargs):
|
| 91 |
+
self.bert = BertModel.from_pretrained(*args, **kwargs)
|
| 92 |
+
self._register_lora(num_adaptions)
|
| 93 |
+
|
| 94 |
+
def _register_lora(self, num_adaptions=1, rank=4, lora_dropout_p=0.0, lora_alpha=1):
|
| 95 |
+
self.apply(partial(LoRAParametrization.add_to_layer, num_adaptions=num_adaptions, rank=rank, lora_dropout_p=lora_dropout_p, lora_alpha=lora_alpha))
|
| 96 |
+
|
| 97 |
+
def select_task(self, task_idx):
|
| 98 |
+
self.apply(partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx))
|
| 99 |
+
|
| 100 |
+
def forward(self, *args, **kwargs):
|
| 101 |
+
return self.bert(*args, **kwargs)
|
| 102 |
+
|
| 103 |
+
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
| 104 |
+
for _å, param in self.named_parameters(recurse=recurse):
|
| 105 |
+
yield param
|
| 106 |
+
|
| 107 |
+
def named_parameters(
|
| 108 |
+
self,
|
| 109 |
+
prefix: str = '',
|
| 110 |
+
recurse: bool = True,
|
| 111 |
+
remove_duplicate: bool = True
|
| 112 |
+
) -> Iterator[Tuple[str, Parameter]]:
|
| 113 |
+
for name, param in super().named_parameters(prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate):
|
| 114 |
+
if 'lora' in name:
|
| 115 |
+
yield name, param
|