# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved. # # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Originally licensed under the Apache License, Version 2.0 (the "License"); # Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage. __all__ = ['FluxTransformer2DModelWithMasking', 'CustomPipeline'] from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import ( Attention, apply_rope, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import ( AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, ) from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.embeddings import ( CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, ) from diffusers.models.modeling_outputs import Transformer2DModelOutput from dataclasses import dataclass from typing import List, Union import PIL.Image from diffusers.utils import BaseOutput import inspect from functools import lru_cache from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch from transformers import ( CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, ) from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import SD3LoraLoaderMixin from diffusers.models.autoencoders import AutoencoderKL from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False @dataclass class FluxPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ images: Union[List[PIL.Image.Image], np.ndarray] logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FluxSingleAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, _, _ = hidden_states.shape query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: # YiYi to-do: update uising apply_rotary_emb # from ..embeddings import apply_rotary_emb # query = apply_rotary_emb(query, image_rotary_emb) # key = apply_rotary_emb(key, image_rotary_emb) query, key = apply_rope(query, key, image_rotary_emb) if attention_mask is not None: attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = (attention_mask > 0).bool() attention_mask = attention_mask.to( device=hidden_states.device, dtype=hidden_states.dtype ) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask, ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size = encoder_hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: # YiYi to-do: update uising apply_rotary_emb # from ..embeddings import apply_rotary_emb # query = apply_rotary_emb(query, image_rotary_emb) # key = apply_rotary_emb(key, image_rotary_emb) query, key = apply_rope(query, key, image_rotary_emb) if attention_mask is not None: attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = (attention_mask > 0).bool() attention_mask = attention_mask.to( device=hidden_states.device, dtype=hidden_states.dtype ) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask, ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) return hidden_states, encoder_hidden_states # YiYi to-do: refactor rope related functions/classes def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: assert dim % 2 == 0, "The dimension must be even." scale = ( torch.arange( 0, dim, 2, dtype=torch.float64, # torch.float32 if torch.backends.mps.is_available() else device=pos.device, ) / dim ) omega = 1.0 / (theta**scale) batch_size, seq_length = pos.shape out = torch.einsum("...n,d->...nd", pos, omega) cos_out = torch.cos(out) sin_out = torch.sin(out) stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) return out.float() # YiYi to-do: refactor rope related functions/classes class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: List[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def expand_flux_attention_mask( hidden_states: torch.Tensor, attn_mask: torch.Tensor, ) -> torch.Tensor: """ Expand a mask so that the image is included. """ bsz = attn_mask.shape[0] assert bsz == hidden_states.shape[0] residual_seq_len = hidden_states.shape[1] mask_seq_len = attn_mask.shape[1] expanded_mask = torch.ones(bsz, residual_seq_len) expanded_mask[:, :mask_seq_len] = attn_mask return expanded_mask @maybe_allow_in_graph class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) processor = FluxSingleAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, attention_mask: Optional[torch.Tensor] = None, ): residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) if attention_mask is not None: attention_mask = expand_flux_attention_mask( hidden_states, attention_mask, ) attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states return hidden_states @maybe_allow_in_graph class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__( self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 ): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward( dim=dim, dim_out=dim, activation_fn="gelu-approximate" ) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, attention_mask: Optional[torch.Tensor] = None, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, emb=temb ) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( self.norm1_context(encoder_hidden_states, emb=temb) ) if attention_mask is not None: attention_mask = expand_flux_attention_mask( torch.cat([encoder_hidden_states, hidden_states], dim=1), attention_mask, ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = ( encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output ) return encoder_hidden_states, hidden_states class FluxTransformer2DModelWithMasking( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin ): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Parameters: patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: List[int] = [16, 56, 56], ): super().__init__() self.out_channels = in_channels self.inner_dim = ( self.config.num_attention_heads * self.config.attention_head_dim ) self.pos_embed = EmbedND( dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope ) text_time_guidance_cls = ( CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings ) self.time_text_embed = text_time_guidance_cls( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim, ) self.context_embedder = nn.Linear( self.config.joint_attention_dim, self.inner_dim ) self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous( self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 ) self.proj_out = nn.Linear( self.inner_dim, patch_size * patch_size * self.out_channels, bias=True ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModelWithMasking`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if ( joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None ): logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) ids = torch.cat((txt_ids, img_ids), dim=1) image_rotary_emb = self.pos_embed(ids) for index_block, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) encoder_hidden_states, hidden_states = ( torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask, **ckpt_kwargs, ) ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) # Flux places the text tokens in front of the image tokens in the # sequence. hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, attention_mask, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, attention_mask=attention_mask, ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import FluxPipeline >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "A cat holding a sign that says hello world" >>> # Depending on the variant being used, the pipeline call will slightly vary. >>> # Refer to the pipeline documentation for more details. >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] >>> image.save("flux.png") ``` """ def calculate_shift( image_seq_len, base_seq_len: int = 256, max_seq_len: int = 4096, base_shift: float = 0.5, max_shift: float = 1.16, ): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError( "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" ) if timesteps is not None: accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class CustomPipeline(DiffusionPipeline, SD3LoraLoaderMixin): r""" The Flux pipeline for text-to-image generation. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Args: transformer ([`FluxTransformer2DModelWithMasking`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` as its dimension. text_encoder_2 ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`CLIPTokenizer`): Second Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). """ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModelWithMasking, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = 64 def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors="pt", ) prompt_attention_mask = text_inputs.attention_mask text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds, prompt_attention_mask def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder( text_input_ids.to(device), output_hidden_states=False ) # Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds @lru_cache(maxsize=128) def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, max_sequence_length: int = 512, lora_scale: Optional[float] = None, ): r""" Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] prompt_attention_mask = None if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # We only use the pooled prompt output from the CLIPTextModel pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if self.text_encoder is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) text_ids = text_ids.repeat(num_images_per_prompt, 1, 1) return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask def check_inputs( self, prompt, prompt_2, height, width, prompt_embeds=None, pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError( f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) elif prompt_2 is not None and ( not isinstance(prompt_2, str) and not isinstance(prompt_2, list) ): raise ValueError( f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError( f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}" ) @staticmethod def _prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height // 2, width // 2, 3) latent_image_ids[..., 1] = ( latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] ) latent_image_ids[..., 2] = ( latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] ) latent_image_id_height, latent_image_id_width, latent_image_id_channels = ( latent_image_ids.shape ) latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) latent_image_ids = latent_image_ids.reshape( batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels, ) return latent_image_ids @staticmethod def _pack_latents(latents, batch_size, num_channels_latents, height, width): latents = latents.view( batch_size, num_channels_latents, height // 2, 2, width // 2, 2 ) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape( batch_size, (height // 2) * (width // 2), num_channels_latents * 4 ) return latents @staticmethod def _unpack_latents(latents, height, width, vae_scale_factor): batch_size, num_patches, channels = latents.shape height = height // vae_scale_factor width = width // vae_scale_factor latents = latents.view(batch_size, height, width, channels // 4, 2, 2) latents = latents.permute(0, 3, 1, 4, 2, 5) latents = latents.reshape( batch_size, channels // (2 * 2), height * 2, width * 2 ) return latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): height = 2 * (int(height) // self.vae_scale_factor) width = 2 * (int(width) // self.vae_scale_factor) shape = (batch_size, num_channels_latents, height, width) if latents is not None: latent_image_ids = self._prepare_latent_image_ids( batch_size, height, width, device, dtype ) return latents, latent_image_ids if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self._pack_latents( latents, batch_size, num_channels_latents, height, width ) latent_image_ids = self._prepare_latent_image_ids( batch_size, height, width, device, dtype ) return latents, latent_image_ids @property def guidance_scale(self): return self._guidance_scale @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_mask: Optional[Union[torch.FloatTensor, List[torch.FloatTensor]]] = None, negative_mask: Optional[ Union[torch.FloatTensor, List[torch.FloatTensor]] ] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, timesteps: List[int] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 512, guidance_scale_real: float = 1.0, negative_prompt: Union[str, List[str]] = "", negative_prompt_2: Union[str, List[str]] = "", negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, no_cfg_until_timestep: int = 0, do_batch_cfg: bool=True, device=torch.device('cuda'), # TODO let this work with non-cuda stuff? Might if you set this to None ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_mask (`str` or `List[str]`, *optional*): The prompt or prompts to be used as a mask for the image generation. If not defined, `prompt` is used instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) # guidance_scale_real is redundant because this pipeline was originally # made to be backwards compatible, but to make it the default just set # guidance scale to be the same things. guidance_scale_real = guidance_scale self._guidance_scale = guidance_scale self._guidance_scale_real = guidance_scale_real self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = device or self._execution_device lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) ( prompt_embeds, pooled_prompt_embeds, text_ids, _prompt_mask, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if _prompt_mask is not None: prompt_mask = _prompt_mask assert prompt_mask is not None if negative_prompt_2 == "" and negative_prompt != "": negative_prompt_2 = negative_prompt negative_text_ids = text_ids if self._guidance_scale_real > 1.0 and ( negative_prompt_embeds is None or negative_pooled_prompt_embeds is None ): ( negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, _neg_prompt_mask, ) = self.encode_prompt( prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if _neg_prompt_mask is not None: negative_mask = _neg_prompt_mask assert negative_mask is not None # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) num_warmup_steps = max( len(timesteps) - num_inference_steps * self.scheduler.order, 0 ) self._num_timesteps = len(timesteps) latents = latents latent_image_ids = latent_image_ids timesteps = timesteps text_ids = text_ids.to(device=device) # handle guidance if self.transformer.config.guidance_embeds: guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) guidance = guidance.expand(latents.shape[0]) else: guidance = None # if use_prompt_mask and prompt_mask is not None and not zero_using_prompt_mask: # print('Using masking') # elif use_prompt_mask and prompt_mask is not None and zero_using_prompt_mask: # print('Using zeroed embeds') # else: # print('Not using masking') # if self._guidance_scale_real > 1.0: # print('Using classifier free guidance', self._guidance_scale_real) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # Prepare the latent model input prompt_embeds_input = prompt_embeds pooled_prompt_embeds_input = pooled_prompt_embeds text_ids_input = text_ids latent_image_ids_input = latent_image_ids prompt_mask_input = prompt_mask latent_model_input = latents if guidance_scale_real > 1.0 and i >= no_cfg_until_timestep: progress_bar.set_postfix( { 'ts': timestep.detach().item() / 1000, 'cfg': self._guidance_scale_real, }, ) else: progress_bar.set_postfix( { 'ts': timestep.detach().item() / 1000, 'cfg': 'N/A', }, ) if do_batch_cfg and guidance_scale_real > 1.0 and i >= no_cfg_until_timestep: # Concatenate prompt embeddings prompt_embeds_input = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds_input = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) # Concatenate text IDs if they are used # if text_ids is not None and negative_text_ids is not None: # text_ids_input = torch.cat([negative_text_ids, text_ids], dim=0) # Concatenate latent image IDs if they are used # if latent_image_ids is not None: # latent_image_ids_input = torch.cat([latent_image_ids, latent_image_ids], dim=0) # Concatenate prompt masks if they are used if prompt_mask is not None and negative_mask is not None: prompt_mask_input = torch.cat([negative_mask, prompt_mask], dim=0) # Duplicate latents for unconditional and conditional inputs latent_model_input = torch.cat([latents] * 2) # Expand timestep to match batch size timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype) # Handle guidance if self.transformer.config.guidance_embeds: guidance = torch.tensor([guidance_scale], device=self.transformer.device) guidance = guidance.expand(latent_model_input.shape[0]) else: guidance = None # Prepare extra transformer arguments extra_transformer_args = {} if prompt_mask is not None: extra_transformer_args["attention_mask"] = prompt_mask_input.to(device=self.transformer.device).contiguous() # Forward pass through the transformer noise_pred = self.transformer( hidden_states=latent_model_input.to(device=self.transformer.device).contiguous() , timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds_input.to(device=self.transformer.device).contiguous() , encoder_hidden_states=prompt_embeds_input.to(device=self.transformer.device).contiguous() , txt_ids=text_ids_input.to(device=self.transformer.device).contiguous() if text_ids is not None else None, img_ids=latent_image_ids_input.to(device=self.transformer.device).contiguous() if latent_image_ids is not None else None, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, **extra_transformer_args, )[0] # Apply real CFG if guidance_scale_real > 1.0 and i >= no_cfg_until_timestep: if do_batch_cfg: # Batched CFG: Split the noise prediction into unconditional and conditional parts noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale_real * (noise_pred_cond - noise_pred_uncond) else: # Sequential CFG: Compute unconditional noise prediction separately noise_pred_uncond = self.transformer( hidden_states=latents.to(device=self.transformer.device), timestep=timestep / 1000, guidance=guidance, pooled_projections=negative_pooled_prompt_embeds.to(device=self.transformer.device), encoder_hidden_states=negative_prompt_embeds.to(device=self.transformer.device), txt_ids=negative_text_ids.to(device=self.transformer.device) if negative_text_ids is not None else None, img_ids=latent_image_ids.to(device=self.transformer.device) if latent_image_ids is not None else None, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # Combine conditional and unconditional predictions noise_pred = noise_pred_uncond + guidance_scale_real * (noise_pred - noise_pred_uncond) # Compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] # Ensure latents have the correct dtype if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): latents = latents.to(latents_dtype) # Callback at the end of the step, if provided if callback_on_step_end is not None: callback_kwargs = {k: locals()[k] for k in callback_on_step_end_tensor_inputs} callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.get("latents", latents) prompt_embeds = callback_outputs.get("prompt_embeds", prompt_embeds) # Update the progress bar if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() # Mark step for XLA devices if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = self._unpack_latents( latents, height, width, self.vae_scale_factor ) latents = ( latents / self.vae.config.scaling_factor ) + self.vae.config.shift_factor image = self.vae.decode( latents, return_dict=False, )[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return FluxPipelineOutput(images=image)