--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: sft_trained_woaqa_mixtral results: [] --- # sft_trained_woaqa_mixtral This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the sft_wo_aqa_mistral dataset. It achieves the following results on the evaluation set: - Loss: 0.8062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8668 | 0.63 | 100 | 0.8571 | | 0.7837 | 1.26 | 200 | 0.8230 | | 0.7824 | 1.9 | 300 | 0.8058 | | 0.7401 | 2.53 | 400 | 0.8059 | | 0.7101 | 3.16 | 500 | 0.8072 | | 0.7037 | 3.79 | 600 | 0.8062 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2