--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlm-CC-7 results: - task: name: Token Classification type: token-classification dataset: name: layoutlmv3 type: layoutlmv3 config: FormsDataset split: test args: FormsDataset metrics: - name: Precision type: precision value: 0.12529002320185614 - name: Recall type: recall value: 0.20224719101123595 - name: F1 type: f1 value: 0.15472779369627507 - name: Accuracy type: accuracy value: 0.19654427645788336 --- # layoutlm-CC-7 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 4.1612 - Precision: 0.1253 - Recall: 0.2022 - F1: 0.1547 - Accuracy: 0.1965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 4.8141 | 1.0 | 1 | 4.7205 | 0.0921 | 0.1311 | 0.1082 | 0.0821 | | 4.7028 | 2.0 | 2 | 4.6365 | 0.1414 | 0.2022 | 0.1664 | 0.1425 | | 4.6011 | 3.0 | 3 | 4.5617 | 0.1230 | 0.2022 | 0.1530 | 0.1274 | | 4.5126 | 4.0 | 4 | 4.4931 | 0.1174 | 0.2022 | 0.1486 | 0.1231 | | 4.4376 | 5.0 | 5 | 4.4390 | 0.1166 | 0.2022 | 0.1479 | 0.1166 | | 4.3778 | 6.0 | 6 | 4.3926 | 0.1166 | 0.2022 | 0.1479 | 0.1188 | | 4.3224 | 7.0 | 7 | 4.3454 | 0.1166 | 0.2022 | 0.1479 | 0.1210 | | 4.2658 | 8.0 | 8 | 4.3058 | 0.1166 | 0.2022 | 0.1479 | 0.1253 | | 4.2182 | 9.0 | 9 | 4.2708 | 0.1179 | 0.2022 | 0.1490 | 0.1425 | | 4.1796 | 10.0 | 10 | 4.2415 | 0.1208 | 0.2022 | 0.1513 | 0.1641 | | 4.1423 | 11.0 | 11 | 4.2165 | 0.1222 | 0.2022 | 0.1523 | 0.1728 | | 4.1197 | 12.0 | 12 | 4.1951 | 0.1230 | 0.2022 | 0.1530 | 0.1793 | | 4.0976 | 13.0 | 13 | 4.1782 | 0.1241 | 0.2022 | 0.1538 | 0.1922 | | 4.0801 | 14.0 | 14 | 4.1669 | 0.1253 | 0.2022 | 0.1547 | 0.1965 | | 4.0627 | 15.0 | 15 | 4.1612 | 0.1253 | 0.2022 | 0.1547 | 0.1965 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3