--- base_model: - google-bert/bert-base-uncased datasets: - microsoft/ms_marco language: - en library_name: transformers pipeline_tag: feature-extraction license: mit --- # Model Card This is the official model from the paper [Hypencoder: Hypernetworks for Information Retrieval](https://arxiv.org/abs/2502.05364). ## Model Details This is a Hypencoder Dual Encoder. It contains two trunks the text encoder and Hypencoder. The text encoder converts items into 768 dimension vectors while the Hypencoder converts text into a small neural network which takes the 768 dimension vector from the text encoder as input. This small network is then used to output a relevance score. To use this model please take a look at the [Github](https://github.com/jfkback/hypencoder-paper) page which contains the required code and details on how to run the model. ### Model Variants We released the four models used in the paper. Each model is identical except the small neural networks, which we refer to as q-nets, have different numbers of hidden layers. | Huggingface Repo | Number of Layers | |:------------------:|:------------------:| | [jfkback/hypencoder.2_layer](https://huggingface.co/jfkback/hypencoder.2_layer) | 2 | | [jfkback/hypencoder.4_layer](https://huggingface.co/jfkback/hypencoder.4_layer) | 4 | | [jfkback/hypencoder.6_layer](https://huggingface.co/jfkback/hypencoder.6_layer) | 6 | | [jfkback/hypencoder.8_layer](https://huggingface.co/jfkback/hypencoder.8_layer) | 8 | ## Usage ```python from hypencoder_cb.modeling.hypencoder import Hypencoder, HypencoderDualEncoder, TextEncoder from transformers import AutoTokenizer dual_encoder = HypencoderDualEncoder.from_pretrained("jfkback/hypencoder.6_layer") tokenizer = AutoTokenizer.from_pretrained("jfkback/hypencoder.6_layer") query_encoder: Hypencoder = dual_encoder.query_encoder passage_encoder: TextEncoder = dual_encoder.passage_encoder queries = [ "how many states are there in india", "when do concussion symptoms appear", ] passages = [ "India has 28 states and 8 union territories.", "Concussion symptoms can appear immediately or up to 72 hours after the injury.", ] query_inputs = tokenizer(queries, return_tensors="pt", padding=True, truncation=True) passage_inputs = tokenizer(passages, return_tensors="pt", padding=True, truncation=True) q_nets = query_encoder(input_ids=query_inputs["input_ids"], attention_mask=query_inputs["attention_mask"]).representation passage_embeddings = passage_encoder(input_ids=passage_inputs["input_ids"], attention_mask=passage_inputs["attention_mask"]).representation # The passage_embeddings has shape (2, 768), but the q_nets expect the shape # (num_queries, num_items_per_query, input_hidden_size) so we need to reshape # the passage_embeddings. # In the simple case where each q_net only takes one passage, we can just # reshape the passage_embeddings to (num_queries, 1, input_hidden_size). passage_embeddings_single = passage_embeddings.unsqueeze(1) scores = q_nets(passage_embeddings_single) # Shape (2, 1, 1) # [ # [[-12.1192]], # [[-13.5832]] # ] # In the case where each q_net takes both passages we can reshape the # passage_embeddings to (num_queries, 2, input_hidden_size). passage_embeddings_double = passage_embeddings.repeat(2, 1).reshape(2, 2, -1) scores = q_nets(passage_embeddings_double) # Shape (2, 2, 1) # [ # [[-12.1192], [-32.7046]], # [[-34.0934], [-13.5832]] # ] ``` ## Citation **BibTeX:** ``` @misc{killingback2025hypencoderhypernetworksinformationretrieval, title={Hypencoder: Hypernetworks for Information Retrieval}, author={Julian Killingback and Hansi Zeng and Hamed Zamani}, year={2025}, eprint={2502.05364}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2502.05364}, } ```