--- license: cc-by-sa-4.0 library_name: peft tags: - generated_from_trainer base_model: stabilityai/stablelm-3b-4e1t model-index: - name: everything results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: stabilityai/stablelm-3b-4e1t base_model_config: stabilityai/stablelm-3b-4e1t trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: GPTNeoXTokenizerFast load_in_8bit: false load_in_4bit: true strict: false datasets: - path: totally-not-an-llm/EverythingLM-data-V3 type: alpaca dataset_prepared_path: val_set_size: 0.005 output_dir: ./everything adapter: qlora sequence_len: 1024 sample_packing: false pad_to_sequence_len: true save_safetensors: false lora_r: 128 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: false lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head lora_target_modules: - q_proj - v_proj gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 5 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 1 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<|endoftext|>" eos_token: "<|im_end|>" unk_token: "<|endoftext|>" tokens: - "<|im_start|>" - "<|im_end|>" ```

# everything This model is a fine-tuned version of [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3873 | 0.02 | 1 | 1.6256 | | 1.1399 | 1.0 | 60 | 0.8263 | | 1.5717 | 2.0 | 120 | 0.8054 | | 0.6861 | 3.0 | 180 | 0.8149 | | 0.9527 | 4.0 | 240 | 0.8036 | | 0.5738 | 5.0 | 300 | 0.8096 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0