jefsnacker commited on
Commit
882423c
·
1 Parent(s): afb22f5

bigger and better model

Browse files
PPO-MlpPolicy-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f758bfc480bcc84eb7f0a8614efc9818b4b533a2fb952a6d5913cbe79b8f162
3
- size 144057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00acca2475a920e2e21994453d1e01e5fcb082d4c3c867bc67c235c11d63fa0e
3
+ size 1678632
PPO-MlpPolicy-LunarLander-v2/data CHANGED
@@ -4,22 +4,38 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fe611057320>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fe611092e10>"
20
  },
21
  "verbose": 0,
22
- "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
  ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
@@ -41,26 +57,29 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651901324.7724934,
51
- "learning_rate": 0.0003,
52
- "tensorboard_log": "runs/2yx4puzp",
 
 
 
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
@@ -69,7 +88,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
@@ -82,7 +101,7 @@
82
  "ent_coef": 0.0,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
- "batch_size": 256,
86
  "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc23e150170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc23e150200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc23e150290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc23e150320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc23e1503b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc23e150440>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc23e1504d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc23e150560>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc23e1505f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc23e150680>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc23e150710>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc23e11cab0>"
20
  },
21
  "verbose": 0,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
26
+ "net_arch": [
27
+ {
28
+ "pi": [
29
+ 256,
30
+ 256
31
+ ],
32
+ "vf": [
33
+ 256,
34
+ 256
35
+ ]
36
+ }
37
+ ]
38
+ },
39
  "observation_space": {
40
  ":type:": "<class 'gym.spaces.box.Box'>",
41
  ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
 
57
  "dtype": "int64",
58
  "_np_random": null
59
  },
60
+ "n_envs": 32,
61
+ "num_timesteps": 2031616,
62
+ "_total_timesteps": 2000000,
63
  "_num_timesteps_at_start": 0,
64
  "seed": null,
65
  "action_noise": null,
66
+ "start_time": 1651948583.062961,
67
+ "learning_rate": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWV+AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHjxpcHl0aG9uLWlucHV0LTUtMzQzZDQ5ZWM2ZjY4PpSMBGZ1bmOUSwtDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgXaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgrdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
70
+ },
71
+ "tensorboard_log": "runs/24cnevl2",
72
  "lr_schedule": {
73
  ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWV+AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHjxpcHl0aG9uLWlucHV0LTUtMzQzZDQ5ZWM2ZjY4PpSMBGZ1bmOUSwtDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgXaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgrdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
  },
76
  "_last_obs": {
77
  ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPO5JL6cE1u8vn9FO7lqfTlnScI9H4KDugAAgD8AAIA/gH8Bvmoyvj4KfiE+Bh5Iv3yeer3xFjg+AAAAAAAAAAAzx4E9FLKzPyYONT5peua+d0C/Pan+pz0AAAAAAAAAAIArLD0ke44/09lQPme5cL8JeJ49dnECPgAAAAAAAAAAZkz5PQxuWz72RUa+EPMEvyiroT2Qoey9AAAAAAAAAADNG7S8L3K2P0Qwg74F7k28ElgXvN2kvr0AAAAAAAAAACCaBL5PQ30/H/slvoB9U7/4QV6+JVJtvQAAAAAAAAAArSwfPrkPhD6+H3K+tvUHv8v8NT0UxBu+AAAAAAAAAAD6Q0K+OncRP3RuRD7xmxi/bXrovrs2fT4AAAAAAAAAAM2/cb3hmo+6mz/OO5w1VjkgEBi7ZvRIOAAAgD8AAIA/AJxBPuKU+z4fXEW+Q4svv+rBDD5+Aza+AAAAAAAAAAAa0Vq9UsDauXRKoDyCRS49Mrb7OAIAEz4AAAAAAACAP83hnTz2VDO6Ygu3NqwwKTL1Wo46+2zZtQAAgD8AAIA/zdujvFwjarq1dqo6qb6bNcg9nzpmv8e5AACAPwAAgD9teGa+PAdsP9Kk57wSOAG/SFemvtLDBz4AAAAAAAAAAJrunL02ShO8gpcAPkx2+zzjf3u9ZbTMPQAAAAAAAIA/zQjDO7PQsz/HVBo/diCLvijG4btK1Qu+AAAAAAAAAACmQxy+1Uw4PuddBz+fYy6/sGS9vpLyxz4AAAAAAAAAAKCTQ76XKNw+vjJRPkPsNr+1ZcC9ujPsPQAAAAAAAAAAszUbPQFwcz82d8g9TFZ5vwJxxD1hkBo9AAAAAAAAAAA6D2a+7nd0Pw81B77k3A+/iEkSv9I1VbwAAAAAAAAAADOY5ryq/3g/BZDDvcJQeb/a6nW9+5Z1PAAAAAAAAAAAmu/Dvc9CET1yjtQ9cgU8vtk9jj1arbm8AAAAAAAAAADTBEW+28UmP/d5gD0UUSW/RzBTvs9dtj0AAAAAAAAAAM0dLb3XH0G7Ut3SPKxR27qCL+s7DKZMvAAAgD8AAIA/c2guPpof0T5Vy7W9dlknvwJAID4FjZa9AAAAAAAAAABNgA89CgdDuX7oYjPmGFMwadccOOqdubMAAIA/AACAP6Ppjj7CaS0/ucEavmKuDL9j6T4+mklJvgAAAAAAAAAAAEa+vHtQ8rozbO49/PjgPFbiwLvTzL89AACAPwAAgD/NDJM697q6P5LxmjzlqJM+4VOmusDFirsAAAAAAAAAAOZ+bT247aO79uDrvY7m8zuQcwY7jWcRPgAAgD8AAIA/M/AGvTncsj+SG+S+tS8qvpsVbDrmjcq9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
79
  },
80
  "_last_episode_starts": {
81
  ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
83
  },
84
  "_last_original_obs": null,
85
  "_episode_num": 0,
 
88
  "_current_progress_remaining": -0.015808000000000044,
89
  "ep_info_buffer": {
90
  ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuECC4keMb0CUhpRSlIwBbJRLqYwBdJRHQKDlwHARChN1fZQoaAZoCWgPQwiwBFJiV7lyQJSGlFKUaBVLtGgWR0Cg5dlxOtW/dX2UKGgGaAloD0MIf74tWCpPc0CUhpRSlGgVS7doFkdAoOYydxyXD3V9lChoBmgJaA9DCJFDxM3pTHJAlIaUUpRoFUuUaBZHQKDmcgW8AaN1fZQoaAZoCWgPQwh9yjFZ3EtDQJSGlFKUaBVLY2gWR0Cg5qX2M85kdX2UKGgGaAloD0MImDEFa5xNt7+UhpRSlGgVS11oFkdAoOcD0Dlo13V9lChoBmgJaA9DCBMOvcXD83JAlIaUUpRoFUu5aBZHQKDnXKbrkbR1fZQoaAZoCWgPQwg2WDhJc/pwQJSGlFKUaBVLlmgWR0Cg52CSzPa+dX2UKGgGaAloD0MIONkG7gC5ckCUhpRSlGgVS7toFkdAoOeG49X9znV9lChoBmgJaA9DCHHHm/wWrXFAlIaUUpRoFUuJaBZHQKDnhWgezUt1fZQoaAZoCWgPQwgSFhVxOjBxQJSGlFKUaBVLtWgWR0Cg598VYZEVdX2UKGgGaAloD0MILv62J0gEc0CUhpRSlGgVS6NoFkdAoOfaiEg4fnV9lChoBmgJaA9DCKw3aoUp0XFAlIaUUpRoFUuaaBZHQKDn9YPoV211fZQoaAZoCWgPQwhqvko+NgpzQJSGlFKUaBVLsmgWR0Cg5/9bgTAWdX2UKGgGaAloD0MIEFoPX6YOckCUhpRSlGgVS9NoFkdAoOgL8vVVgnV9lChoBmgJaA9DCBbdek2P8HJAlIaUUpRoFUutaBZHQKDoJHoX9BN1fZQoaAZoCWgPQwiJCtXNBXRyQJSGlFKUaBVLvWgWR0Cg6D6uwHJLdX2UKGgGaAloD0MILNSa5l10ckCUhpRSlGgVS75oFkdAoOidwkxASnV9lChoBmgJaA9DCEQ1JVkHaXNAlIaUUpRoFUupaBZHQKDo0PmPo3d1fZQoaAZoCWgPQwiJfJdSl4RxQJSGlFKUaBVLvmgWR0Cg6PK2KEWZdX2UKGgGaAloD0MIKQRyiSPKc0CUhpRSlGgVS7RoFkdAoOjy4SYgJXV9lChoBmgJaA9DCAPtDilG73FAlIaUUpRoFUvAaBZHQKDpArT6SDB1fZQoaAZoCWgPQwjXMhmO535wQJSGlFKUaBVLpGgWR0Cg6SZ8a4tpdX2UKGgGaAloD0MIzR5oBQaVcUCUhpRSlGgVS6FoFkdAoOkcKu0TlHV9lChoBmgJaA9DCHGNz2S/BXNAlIaUUpRoFUucaBZHQKDpHCQ9zOp1fZQoaAZoCWgPQwhPdF34wedwQJSGlFKUaBVLmWgWR0Cg6VEZiuuBdX2UKGgGaAloD0MIH75MFOFJcECUhpRSlGgVS5VoFkdAoOlJv99+gHV9lChoBmgJaA9DCEvJchLKLnBAlIaUUpRoFUuVaBZHQKDpWSjgydp1fZQoaAZoCWgPQwjNIamFUtdxQJSGlFKUaBVLqWgWR0Cg6U75VOsUdX2UKGgGaAloD0MIRIgrZ+9DckCUhpRSlGgVS71oFkdAoOmzcM3IdXV9lChoBmgJaA9DCPTdrSwR3XFAlIaUUpRoFUubaBZHQKDqIwVTJhh1fZQoaAZoCWgPQwgjh4ibU/txQJSGlFKUaBVLtGgWR0Cg6iDJ+2E1dX2UKGgGaAloD0MIY0M3+0OWcECUhpRSlGgVS7JoFkdAoOpwiosI3XV9lChoBmgJaA9DCNOgaB7AynJAlIaUUpRoFUvQaBZHQKDqfVp9JBh1fZQoaAZoCWgPQwgu/yH9trRzQJSGlFKUaBVL0GgWR0Cg6qNQ9A5adX2UKGgGaAloD0MIswxxrEvhcUCUhpRSlGgVS4toFkdAoOqwtlI3BHV9lChoBmgJaA9DCH1Yb9TKBHBAlIaUUpRoFUuYaBZHQKDrKYOUdJd1fZQoaAZoCWgPQwjdtu9RP/hxQJSGlFKUaBVLwWgWR0Cg60mxMWXUdX2UKGgGaAloD0MIPSgoRSt8ckCUhpRSlGgVS7doFkdAoOtw4ffXPXV9lChoBmgJaA9DCNZvJqaL0W9AlIaUUpRoFUuSaBZHQKDrfJK8L8d1fZQoaAZoCWgPQwgvbw7X6m1xQJSGlFKUaBVLqGgWR0Cg6+SZ0CA+dX2UKGgGaAloD0MIiujX1g8Qc0CUhpRSlGgVS5hoFkdAoOvmO801qHV9lChoBmgJaA9DCGYv206b03JAlIaUUpRoFUuvaBZHQKDsQ4CIUJx1fZQoaAZoCWgPQwgVjiCV4s5wQJSGlFKUaBVLm2gWR0Cg7F0nw5NodX2UKGgGaAloD0MIEd+JWe/Yc0CUhpRSlGgVS7ZoFkdAoOyIf0VafXV9lChoBmgJaA9DCJ4kXTP5ynJAlIaUUpRoFUvHaBZHQKDssfHxSYR1fZQoaAZoCWgPQwgicY+lz+FxQJSGlFKUaBVLxWgWR0Cg7L0Gu9vkdX2UKGgGaAloD0MIyw9c5QlYb0CUhpRSlGgVS5VoFkdAoOzCNyYG+3V9lChoBmgJaA9DCDJaR1VTaHBAlIaUUpRoFUucaBZHQKDswPkq+al1fZQoaAZoCWgPQwg83uS36EZDQJSGlFKUaBVLWGgWR0Cg7NrqUu+RdX2UKGgGaAloD0MIhuP5DGgMckCUhpRSlGgVS5doFkdAoOz/ljmSyXV9lChoBmgJaA9DCImzImpibnFAlIaUUpRoFUuWaBZHQKDs98P4EfV1fZQoaAZoCWgPQwgFM6ZgzVdxQJSGlFKUaBVLoWgWR0Cg7RfYJ3PidX2UKGgGaAloD0MIDB6mfbNtckCUhpRSlGgVS+doFkdAoO0nAuZkTnV9lChoBmgJaA9DCE+xahCmy3BAlIaUUpRoFUu2aBZHQKDtQg13t8h1fZQoaAZoCWgPQwhv8fCeA2JwQJSGlFKUaBVLrGgWR0Cg7VJbt7a7dX2UKGgGaAloD0MI6s4TzxkzcUCUhpRSlGgVS7xoFkdAoO2YjIJZ4nV9lChoBmgJaA9DCLkcr0D0QXJAlIaUUpRoFUu1aBZHQKDtw1kUbkx1fZQoaAZoCWgPQwjuztpt15dxQJSGlFKUaBVLtmgWR0Cg7buPFNtZdX2UKGgGaAloD0MIiNf1C/aQckCUhpRSlGgVS8xoFkdAoO3s5uIhyXV9lChoBmgJaA9DCDIFa5zNkXFAlIaUUpRoFUuvaBZHQKDuAdxQzk91fZQoaAZoCWgPQwgdAHFXb05zQJSGlFKUaBVNGwFoFkdAoO5BnJ1aGHV9lChoBmgJaA9DCNasM77v53NAlIaUUpRoFUu6aBZHQKDuxedkJ8h1fZQoaAZoCWgPQwj+CpkrQyZyQJSGlFKUaBVLv2gWR0Cg7uMV1wHadX2UKGgGaAloD0MIb7vQXKeIc0CUhpRSlGgVS6loFkdAoO9oGr0aqHV9lChoBmgJaA9DCCuFQC4xMXFAlIaUUpRoFUuUaBZHQKDvnfpljEx1fZQoaAZoCWgPQwj2JLA5h6pxQJSGlFKUaBVLsWgWR0Cg77+YD1XedX2UKGgGaAloD0MIKsQj8TKpckCUhpRSlGgVS4JoFkdAoPAEkQf6oHV9lChoBmgJaA9DCFX5npHIW3BAlIaUUpRoFUuYaBZHQKDwHiPQv6F1fZQoaAZoCWgPQwhFn48yYsNxQJSGlFKUaBVLumgWR0Cg8Ce/xlQNdX2UKGgGaAloD0MIUaIlj2cGckCUhpRSlGgVS9loFkdAoPAwuAZsK3V9lChoBmgJaA9DCGDkZU3sXXJAlIaUUpRoFUvlaBZHQKDwQPuG9Ht1fZQoaAZoCWgPQwj8Ny9OPEhxQJSGlFKUaBVLn2gWR0Cg8Gi7CiyqdX2UKGgGaAloD0MIOdIZGHnFcECUhpRSlGgVS8BoFkdAoPBczqKP4nV9lChoBmgJaA9DCGy0HOjhA3NAlIaUUpRoFUvuaBZHQKDwiFX7tRh1fZQoaAZoCWgPQwjFG5lHvh1yQJSGlFKUaBVLu2gWR0Cg8KF2mpEQdX2UKGgGaAloD0MI4zPZP8/ycECUhpRSlGgVS6JoFkdAoPDcMd92HXV9lChoBmgJaA9DCD+qYb8n1XBAlIaUUpRoFUuqaBZHQKDxAZdfLLZ1fZQoaAZoCWgPQwi+bDttDRJwQJSGlFKUaBVLq2gWR0Cg8RPZRKpUdX2UKGgGaAloD0MIcctHUlIYcUCUhpRSlGgVS7BoFkdAoPFtfZ26kXV9lChoBmgJaA9DCNJWJZG96XBAlIaUUpRoFUuoaBZHQKDxh3j+7191fZQoaAZoCWgPQwibWUsBqadzQJSGlFKUaBVLsmgWR0Cg8Z1/2Cd0dX2UKGgGaAloD0MIO3KkMzDjcECUhpRSlGgVS7hoFkdAoPHUdT5wfnV9lChoBmgJaA9DCPUvSWUK2HBAlIaUUpRoFUuxaBZHQKDx03uuzQh1fZQoaAZoCWgPQwgrNBDLZqNyQJSGlFKUaBVLmWgWR0Cg8dmRmseXdX2UKGgGaAloD0MI97AXCtjacUCUhpRSlGgVS9ZoFkdAoPH3LPldT3V9lChoBmgJaA9DCDV/TGtTanJAlIaUUpRoFUvJaBZHQKDx9BD5TIh1fZQoaAZoCWgPQwjAIOnTqslyQJSGlFKUaBVLymgWR0Cg8h6ZH/cWdX2UKGgGaAloD0MIczCbAMNLc0CUhpRSlGgVS7NoFkdAoPJMVtXPq3V9lChoBmgJaA9DCBIvT+fKqnBAlIaUUpRoFUuqaBZHQKDyXAAQxvh1fZQoaAZoCWgPQwiU+rK0U+tyQJSGlFKUaBVLwmgWR0Cg8rE5IYm+dX2UKGgGaAloD0MIRn2SO2yySkCUhpRSlGgVS2VoFkdAoPK2Wa+ev3V9lChoBmgJaA9DCGA7GLGPTHNAlIaUUpRoFUvQaBZHQKDy5YdQwbl1fZQoaAZoCWgPQwhkJHuEmppyQJSGlFKUaBVLv2gWR0Cg8yWrn1WbdX2UKGgGaAloD0MIEMmQYyu/cECUhpRSlGgVS6toFkdAoPMm2NNrTHV9lChoBmgJaA9DCFMFo5J6w3FAlIaUUpRoFUuWaBZHQKDziIdELIB1fZQoaAZoCWgPQwj/lCpR9lBKQJSGlFKUaBVLb2gWR0Cg88bK7qY7dX2UKGgGaAloD0MI/KvHfavQcUCUhpRSlGgVS75oFkdAoPO6zPa+OHV9lChoBmgJaA9DCOhKBKq/UHNAlIaUUpRoFUusaBZHQKDzwdfb9Ih1fZQoaAZoCWgPQwjSxaaVQuZvQJSGlFKUaBVLl2gWR0Cg8+X5eqrBdWUu"
92
  },
93
  "ep_success_buffer": {
94
  ":type:": "<class 'collections.deque'>",
 
101
  "ent_coef": 0.0,
102
  "vf_coef": 0.5,
103
  "max_grad_norm": 0.5,
104
+ "batch_size": 2048,
105
  "n_epochs": 10,
106
  "clip_range": {
107
  ":type:": "<class 'function'>",
PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:20350562d747819451cf138ba7907a5237c4262c5052bc2471d3e954a8b38338
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2251b179f8f51de1e3ef4f3993b6616c09a28fc6acc0ada5fc87d596b4d1e5ef
3
+ size 1106333
PPO-MlpPolicy-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d622a9a8098ea00c6090724c4ffb82e7ee77c3285ed658f197ffab4dd2dca7cc
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da4fc86f6f5133df66e3245d9de37573e55436978f818fce0c49f0a5716b1ce4
3
+ size 553985
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 184.07 +/- 69.58
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 284.52 +/- 16.29
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6110570e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe611057170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe611057200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe611057290>", "_build": "<function ActorCriticPolicy._build at 0x7fe611057320>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6110573b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe611057440>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6110574d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe611057560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6110575f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe611057680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe611092e10>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651901324.7724934, "learning_rate": 0.0003, "tensorboard_log": "runs/2yx4puzp", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAzUz4yWZ8/WkvPPpkRyb7khDc+aj1CvQAAAAAAAAAAKwWBvh+Q6Twq7H49QOcivl6pEjzPirM8AAAAAAAAAABm6UO+rrv1O6Z3FTv6tNC4nuGNvY6ZNLoAAIA/AACAPxNzUz4DXmq8oB32OivF97iH28a9nwkTugAAgD8AAIA/U9kTvh89xzr6+jo7U27juNSTiLxdYsU5AACAPwAAgD/m+F09XFNkus1cmzX66wwxPB7ouXsmr7QAAIA/AACAP7u8vb7x4FM8w3aduvFzlzjpgdW9qq3KOQAAgD8AAIA/AEG1PCjbsj9G/9g+RiIyvtpsAbySg009AAAAAAAAAABmZsc+ilMePG5OZrvOhAs5F7AfvdFVnToAAIA/AACAP8Xxw760IMi8C4Kfuo+DIbjArUk9Shy/OQAAgD8AAIA/k/fqPj0+qb02OTY7/Hi0uASxg70KVYS6AACAPwAAgD/oOc++j6gwPeYB2rtwxcg5JzujvSQGtToAAIA/AACAP8ZVPj4KO4c/zpKFPjWHpb6luBs+PveGvQAAAAAAAAAAILIHvq7PgTleiz48QrRluc7mBzrGZUk6AACAPwAAgD/Qdac+G8KGvHgEVL1Z/oK9qcavvU10cr4AAIA/AACAP6avmD1c5zO631mHObwUd7N/bQu7vnqduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6YGPwYoBXUCUhpRSlIwBbJRN6AOMAXSUR0CWegMV1wHadX2UKGgGaAloD0MIvd9oxw0mXUCUhpRSlGgVTegDaBZHQJali57PY4B1fZQoaAZoCWgPQwj+ne3RG5BeQJSGlFKUaBVN6ANoFkdAlqWN4zJp4HV9lChoBmgJaA9DCEYL0LaafUnAlIaUUpRoFU0JAWgWR0CWqHXrt3OfdX2UKGgGaAloD0MIdopVg7AoYkCUhpRSlGgVTegDaBZHQJaor8rI5o51fZQoaAZoCWgPQwjtEWqGVEdhQJSGlFKUaBVN6ANoFkdAlqoCIYWLxnV9lChoBmgJaA9DCEt4Qq+/YWNAlIaUUpRoFU3oA2gWR0CWrcuWKMvRdX2UKGgGaAloD0MIdsQhG8iWakCUhpRSlGgVTV0BaBZHQJaxDcTJyQx1fZQoaAZoCWgPQwjZXgt6bxxcQJSGlFKUaBVN6ANoFkdAlrW/W+XZ5HV9lChoBmgJaA9DCJ8cBYiCHW5AlIaUUpRoFU08AWgWR0CWvUmZmZmadX2UKGgGaAloD0MITGvT2F4Ya0CUhpRSlGgVTVkBaBZHQJa/bzOHFgl1fZQoaAZoCWgPQwijO4idKR5fQJSGlFKUaBVN6ANoFkdAlsLsHB1s+HV9lChoBmgJaA9DCANBgAwdbWJAlIaUUpRoFU3oA2gWR0CWxmk0Jng6dX2UKGgGaAloD0MITRB1HwChYECUhpRSlGgVTegDaBZHQJbHZrrPdEd1fZQoaAZoCWgPQwi53jZTIQJiQJSGlFKUaBVNAwJoFkdAltPdbC79RHV9lChoBmgJaA9DCC8X8Z2Yul9AlIaUUpRoFU3oA2gWR0CW1dtf5ULldX2UKGgGaAloD0MItY0/UdlGYECUhpRSlGgVTegDaBZHQJbaMhje9Bd1fZQoaAZoCWgPQwgbguMy7jpgQJSGlFKUaBVN6ANoFkdAltqdGus90XV9lChoBmgJaA9DCAQ4vYt3R21AlIaUUpRoFU1LAWgWR0CW2z4YrJ8wdX2UKGgGaAloD0MIgehJmVSuaECUhpRSlGgVTYMBaBZHQJbb9sfq5b11fZQoaAZoCWgPQwi+wRcmU+JfQJSGlFKUaBVN6ANoFkdAluERllK9PHV9lChoBmgJaA9DCJfiqrLv7ltAlIaUUpRoFU3oA2gWR0CW5uw6QvHtdX2UKGgGaAloD0MI1o7iHHVcKUCUhpRSlGgVS+5oFkdAlusS6tknTnV9lChoBmgJaA9DCAlP6PWnKGxAlIaUUpRoFU1MAWgWR0CW7Jv1UVBVdX2UKGgGaAloD0MIYHe688Rzur+UhpRSlGgVTRsBaBZHQJbu+6e5Fw11fZQoaAZoCWgPQwhpw2Fp4MVdQJSGlFKUaBVN6ANoFkdAlvB2P5pJw3V9lChoBmgJaA9DCO+P96qVlWFAlIaUUpRoFU3oA2gWR0CW8KWldkaudX2UKGgGaAloD0MIExCTcKHlbECUhpRSlGgVTaABaBZHQJbwqjL0SRN1fZQoaAZoCWgPQwgXSFD8mExqQJSGlFKUaBVNVQFoFkdAlvEpOafBe3V9lChoBmgJaA9DCO5Cc51GS2FAlIaUUpRoFU3oA2gWR0CW8aDQqqffdX2UKGgGaAloD0MIS8tIvSfkYkCUhpRSlGgVTegDaBZHQJb2omqo60Z1fZQoaAZoCWgPQwiYh0z5EOZpQJSGlFKUaBVNWwFoFkdAlvcctPHktHV9lChoBmgJaA9DCAR1yqMb1TXAlIaUUpRoFUvuaBZHQJb5J1q33Ht1fZQoaAZoCWgPQwg7Gof6XRdcQJSGlFKUaBVN6ANoFkdAlvoQoCuEEnV9lChoBmgJaA9DCAaAKm5c9WlAlIaUUpRoFU1cAWgWR0CW+/c0Ltu2dX2UKGgGaAloD0MIZTVdT3SaYUCUhpRSlGgVTegDaBZHQJcAADnvDxd1fZQoaAZoCWgPQwh+kGXBROppQJSGlFKUaBVNWgFoFkdAlwTrh3qzJXV9lChoBmgJaA9DCBQgCmZMUTdAlIaUUpRoFU0GAWgWR0CXBlm65Gz9dX2UKGgGaAloD0MI3CqIgS4tYECUhpRSlGgVTegDaBZHQJcH7zoUzsR1fZQoaAZoCWgPQwj+17lpM35cQJSGlFKUaBVN6ANoFkdAlwjOTV2A5XV9lChoBmgJaA9DCGzRArQti2pAlIaUUpRoFU3zAmgWR0CXCerYXfqHdX2UKGgGaAloD0MIZ7RVSeT6a0CUhpRSlGgVTWgBaBZHQJcQCejEehh1fZQoaAZoCWgPQwi/1TpxuZBjQJSGlFKUaBVNvAFoFkdAlxmKTW5H3HV9lChoBmgJaA9DCIup9BPOxkPAlIaUUpRoFU0nAWgWR0CXGr4FzMibdX2UKGgGaAloD0MIFHtoHytBbECUhpRSlGgVTTYBaBZHQJcemMju8bt1fZQoaAZoCWgPQwjLorCLotRgQJSGlFKUaBVN6ANoFkdAly90ZeiSJXV9lChoBmgJaA9DCIzzN6EQlFtAlIaUUpRoFU3oA2gWR0CXMm9bX6IndX2UKGgGaAloD0MISOLl6VzoXECUhpRSlGgVTegDaBZHQJcz9JOFg2J1fZQoaAZoCWgPQwgRABx79rBcQJSGlFKUaBVN6ANoFkdAlzQqk/KQrHV9lChoBmgJaA9DCOUK73IREl1AlIaUUpRoFU3oA2gWR0CXNDCb+cYqdX2UKGgGaAloD0MI/WoOEMzUXECUhpRSlGgVTegDaBZHQJduTGecx0x1fZQoaAZoCWgPQwguWRXhpnVgQJSGlFKUaBVN6ANoFkdAl62WZNO/L3V9lChoBmgJaA9DCEpCIm1j7mJAlIaUUpRoFU3oA2gWR0CX0Aghr30xdX2UKGgGaAloD0MIDHkEN1KgX0CUhpRSlGgVTegDaBZHQJfr3Eehf0F1fZQoaAZoCWgPQwgcKPBOPtdsQJSGlFKUaBVNMgFoFkdAl+yRVIZqEnV9lChoBmgJaA9DCOvkDMWdEGxAlIaUUpRoFU1zAWgWR0CX7L6RyOrAdX2UKGgGaAloD0MIkQn4NZKLakCUhpRSlGgVTUABaBZHQJfs1rnDBM11fZQoaAZoCWgPQwhss7ESc1ZqQJSGlFKUaBVNswNoFkdAl+2CdJ8OTnV9lChoBmgJaA9DCCGx3T1AAF1AlIaUUpRoFU3oA2gWR0CX7cKP4mCzdX2UKGgGaAloD0MIucFQh5VoZ0CUhpRSlGgVTX0BaBZHQJfu8H3UQTV1fZQoaAZoCWgPQwgDCB9KtFlsQJSGlFKUaBVN5QJoFkdAl+9CprDZUXV9lChoBmgJaA9DCBX+DG/WCWBAlIaUUpRoFU3oA2gWR0CX78moBJZodX2UKGgGaAloD0MInPpA8s6obkCUhpRSlGgVTdgDaBZHQJfyUxzq8lJ1fZQoaAZoCWgPQwhZox6i0Uk+QJSGlFKUaBVL8GgWR0CX8uz9CNS7dX2UKGgGaAloD0MIsRngguyaaECUhpRSlGgVTTABaBZHQJf3Wk1uR9x1fZQoaAZoCWgPQwjwUX+9wldgQJSGlFKUaBVN6ANoFkdAl/kXFtKqXHV9lChoBmgJaA9DCBZod0hxt3BAlIaUUpRoFU0lAWgWR0CX+xhmoR7JdX2UKGgGaAloD0MIIeS8/49VX0CUhpRSlGgVTegDaBZHQJf8q0Y0l7d1fZQoaAZoCWgPQwiwOJz51YVpQJSGlFKUaBVNbQJoFkdAmAFpDNQj2XV9lChoBmgJaA9DCFlsk4pGdmdAlIaUUpRoFU2CAWgWR0CYAWyHmA9WdX2UKGgGaAloD0MIVRLZB1laaUCUhpRSlGgVTaIBaBZHQJgEfM9r4351fZQoaAZoCWgPQwhp44i1eF1tQJSGlFKUaBVNIAFoFkdAmAg3nuAqeHV9lChoBmgJaA9DCBoxs89jK15AlIaUUpRoFU3oA2gWR0CYDOU8FINFdX2UKGgGaAloD0MIrP2d7VF9cECUhpRSlGgVTXoCaBZHQJgNG+M6zVt1fZQoaAZoCWgPQwiSBUzg1i1dQJSGlFKUaBVN6ANoFkdAmA5y53C9AXV9lChoBmgJaA9DCAK7mjxlL0FAlIaUUpRoFUvxaBZHQJgREHeJpFl1fZQoaAZoCWgPQwj2XRH873NiQJSGlFKUaBVN6ANoFkdAmBcYGY8dP3V9lChoBmgJaA9DCJSl1vsNHGtAlIaUUpRoFU13AmgWR0CYGPL8aXKKdX2UKGgGaAloD0MI1cvvNJlvbECUhpRSlGgVTZoBaBZHQJggqSkj5bh1fZQoaAZoCWgPQwjzVfKxuxFqQJSGlFKUaBVNNgFoFkdAmCMgl8gIQnV9lChoBmgJaA9DCM/ZAkLrjmtAlIaUUpRoFU2wA2gWR0CYI9N8E3bVdX2UKGgGaAloD0MIwaikTkAbWkCUhpRSlGgVTegDaBZHQJgkXL0SRKZ1fZQoaAZoCWgPQwigpMACmP9qQJSGlFKUaBVNcQJoFkdAmCUceGO+7HV9lChoBmgJaA9DCDVG66hq5mFAlIaUUpRoFU3oA2gWR0CYJR6sQumKdX2UKGgGaAloD0MIHXIz3IDMbECUhpRSlGgVTWABaBZHQJgpoXUH6dl1fZQoaAZoCWgPQwgXZwxzgjYJQJSGlFKUaBVNCAFoFkdAmCr2nsLORnV9lChoBmgJaA9DCBLcSNmiH2lAlIaUUpRoFU1UAWgWR0CYLfktmL9/dX2UKGgGaAloD0MIJy8yAb/pW0CUhpRSlGgVTegDaBZHQJgwflhgE2Z1fZQoaAZoCWgPQwi7KHrg42lrQJSGlFKUaBVNbwJoFkdAmDH/+bVjJHV9lChoBmgJaA9DCFuwVBfwa29AlIaUUpRoFU0wAmgWR0CYMn5avA45dX2UKGgGaAloD0MIxCKGHcbUM8CUhpRSlGgVTQUBaBZHQJgztFw1ivx1fZQoaAZoCWgPQwiXVG03QQljQJSGlFKUaBVN6ANoFkdAmDmGEkB0ZHV9lChoBmgJaA9DCNTX8zVL2WJAlIaUUpRoFU3oA2gWR0CYPpicG1QZdX2UKGgGaAloD0MIUkZcAJpfakCUhpRSlGgVTTYBaBZHQJg+q8pTdcl1fZQoaAZoCWgPQwiNYOP6dz33P5SGlFKUaBVL3mgWR0CYQUd7fHghdX2UKGgGaAloD0MIAruaPGUTakCUhpRSlGgVTYcBaBZHQJhC6dwvQF91fZQoaAZoCWgPQwiXGqGfqX5iQJSGlFKUaBVN6ANoFkdAmEQE/OdGzHV9lChoBmgJaA9DCJxvRPesPWJAlIaUUpRoFU3oA2gWR0CYUrXCTEBKdX2UKGgGaAloD0MI93MK8rP9OkCUhpRSlGgVTSEBaBZHQJhTjoZAIIF1fZQoaAZoCWgPQwgjTbwDvJloQJSGlFKUaBVNRwFoFkdAmFZzhtLteHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc23e150170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc23e150200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc23e150290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc23e150320>", "_build": "<function ActorCriticPolicy._build at 0x7fc23e1503b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc23e150440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc23e1504d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc23e150560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc23e1505f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc23e150680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc23e150710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc23e11cab0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoTQABTQABZYwCdmaUXZQoTQABTQABZXVhdS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651948583.062961, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV+AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHjxpcHl0aG9uLWlucHV0LTUtMzQzZDQ5ZWM2ZjY4PpSMBGZ1bmOUSwtDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgXaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgrdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "runs/24cnevl2", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHjxpcHl0aG9uLWlucHV0LTUtMzQzZDQ5ZWM2ZjY4PpSMBGZ1bmOUSwtDAgAHlIwNaW5pdGlhbF92YWx1ZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgXaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgrdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz90euFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPO5JL6cE1u8vn9FO7lqfTlnScI9H4KDugAAgD8AAIA/gH8Bvmoyvj4KfiE+Bh5Iv3yeer3xFjg+AAAAAAAAAAAzx4E9FLKzPyYONT5peua+d0C/Pan+pz0AAAAAAAAAAIArLD0ke44/09lQPme5cL8JeJ49dnECPgAAAAAAAAAAZkz5PQxuWz72RUa+EPMEvyiroT2Qoey9AAAAAAAAAADNG7S8L3K2P0Qwg74F7k28ElgXvN2kvr0AAAAAAAAAACCaBL5PQ30/H/slvoB9U7/4QV6+JVJtvQAAAAAAAAAArSwfPrkPhD6+H3K+tvUHv8v8NT0UxBu+AAAAAAAAAAD6Q0K+OncRP3RuRD7xmxi/bXrovrs2fT4AAAAAAAAAAM2/cb3hmo+6mz/OO5w1VjkgEBi7ZvRIOAAAgD8AAIA/AJxBPuKU+z4fXEW+Q4svv+rBDD5+Aza+AAAAAAAAAAAa0Vq9UsDauXRKoDyCRS49Mrb7OAIAEz4AAAAAAACAP83hnTz2VDO6Ygu3NqwwKTL1Wo46+2zZtQAAgD8AAIA/zdujvFwjarq1dqo6qb6bNcg9nzpmv8e5AACAPwAAgD9teGa+PAdsP9Kk57wSOAG/SFemvtLDBz4AAAAAAAAAAJrunL02ShO8gpcAPkx2+zzjf3u9ZbTMPQAAAAAAAIA/zQjDO7PQsz/HVBo/diCLvijG4btK1Qu+AAAAAAAAAACmQxy+1Uw4PuddBz+fYy6/sGS9vpLyxz4AAAAAAAAAAKCTQ76XKNw+vjJRPkPsNr+1ZcC9ujPsPQAAAAAAAAAAszUbPQFwcz82d8g9TFZ5vwJxxD1hkBo9AAAAAAAAAAA6D2a+7nd0Pw81B77k3A+/iEkSv9I1VbwAAAAAAAAAADOY5ryq/3g/BZDDvcJQeb/a6nW9+5Z1PAAAAAAAAAAAmu/Dvc9CET1yjtQ9cgU8vtk9jj1arbm8AAAAAAAAAADTBEW+28UmP/d5gD0UUSW/RzBTvs9dtj0AAAAAAAAAAM0dLb3XH0G7Ut3SPKxR27qCL+s7DKZMvAAAgD8AAIA/c2guPpof0T5Vy7W9dlknvwJAID4FjZa9AAAAAAAAAABNgA89CgdDuX7oYjPmGFMwadccOOqdubMAAIA/AACAP6Ppjj7CaS0/ucEavmKuDL9j6T4+mklJvgAAAAAAAAAAAEa+vHtQ8rozbO49/PjgPFbiwLvTzL89AACAPwAAgD/NDJM697q6P5LxmjzlqJM+4VOmusDFirsAAAAAAAAAAOZ+bT247aO79uDrvY7m8zuQcwY7jWcRPgAAgD8AAIA/M/AGvTncsj+SG+S+tS8qvpsVbDrmjcq9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuECC4keMb0CUhpRSlIwBbJRLqYwBdJRHQKDlwHARChN1fZQoaAZoCWgPQwiwBFJiV7lyQJSGlFKUaBVLtGgWR0Cg5dlxOtW/dX2UKGgGaAloD0MIf74tWCpPc0CUhpRSlGgVS7doFkdAoOYydxyXD3V9lChoBmgJaA9DCJFDxM3pTHJAlIaUUpRoFUuUaBZHQKDmcgW8AaN1fZQoaAZoCWgPQwh9yjFZ3EtDQJSGlFKUaBVLY2gWR0Cg5qX2M85kdX2UKGgGaAloD0MImDEFa5xNt7+UhpRSlGgVS11oFkdAoOcD0Dlo13V9lChoBmgJaA9DCBMOvcXD83JAlIaUUpRoFUu5aBZHQKDnXKbrkbR1fZQoaAZoCWgPQwg2WDhJc/pwQJSGlFKUaBVLlmgWR0Cg52CSzPa+dX2UKGgGaAloD0MIONkG7gC5ckCUhpRSlGgVS7toFkdAoOeG49X9znV9lChoBmgJaA9DCHHHm/wWrXFAlIaUUpRoFUuJaBZHQKDnhWgezUt1fZQoaAZoCWgPQwgSFhVxOjBxQJSGlFKUaBVLtWgWR0Cg598VYZEVdX2UKGgGaAloD0MILv62J0gEc0CUhpRSlGgVS6NoFkdAoOfaiEg4fnV9lChoBmgJaA9DCKw3aoUp0XFAlIaUUpRoFUuaaBZHQKDn9YPoV211fZQoaAZoCWgPQwhqvko+NgpzQJSGlFKUaBVLsmgWR0Cg5/9bgTAWdX2UKGgGaAloD0MIEFoPX6YOckCUhpRSlGgVS9NoFkdAoOgL8vVVgnV9lChoBmgJaA9DCBbdek2P8HJAlIaUUpRoFUutaBZHQKDoJHoX9BN1fZQoaAZoCWgPQwiJCtXNBXRyQJSGlFKUaBVLvWgWR0Cg6D6uwHJLdX2UKGgGaAloD0MILNSa5l10ckCUhpRSlGgVS75oFkdAoOidwkxASnV9lChoBmgJaA9DCEQ1JVkHaXNAlIaUUpRoFUupaBZHQKDo0PmPo3d1fZQoaAZoCWgPQwiJfJdSl4RxQJSGlFKUaBVLvmgWR0Cg6PK2KEWZdX2UKGgGaAloD0MIKQRyiSPKc0CUhpRSlGgVS7RoFkdAoOjy4SYgJXV9lChoBmgJaA9DCAPtDilG73FAlIaUUpRoFUvAaBZHQKDpArT6SDB1fZQoaAZoCWgPQwjXMhmO535wQJSGlFKUaBVLpGgWR0Cg6SZ8a4tpdX2UKGgGaAloD0MIzR5oBQaVcUCUhpRSlGgVS6FoFkdAoOkcKu0TlHV9lChoBmgJaA9DCHGNz2S/BXNAlIaUUpRoFUucaBZHQKDpHCQ9zOp1fZQoaAZoCWgPQwhPdF34wedwQJSGlFKUaBVLmWgWR0Cg6VEZiuuBdX2UKGgGaAloD0MIH75MFOFJcECUhpRSlGgVS5VoFkdAoOlJv99+gHV9lChoBmgJaA9DCEvJchLKLnBAlIaUUpRoFUuVaBZHQKDpWSjgydp1fZQoaAZoCWgPQwjNIamFUtdxQJSGlFKUaBVLqWgWR0Cg6U75VOsUdX2UKGgGaAloD0MIRIgrZ+9DckCUhpRSlGgVS71oFkdAoOmzcM3IdXV9lChoBmgJaA9DCPTdrSwR3XFAlIaUUpRoFUubaBZHQKDqIwVTJhh1fZQoaAZoCWgPQwgjh4ibU/txQJSGlFKUaBVLtGgWR0Cg6iDJ+2E1dX2UKGgGaAloD0MIY0M3+0OWcECUhpRSlGgVS7JoFkdAoOpwiosI3XV9lChoBmgJaA9DCNOgaB7AynJAlIaUUpRoFUvQaBZHQKDqfVp9JBh1fZQoaAZoCWgPQwgu/yH9trRzQJSGlFKUaBVL0GgWR0Cg6qNQ9A5adX2UKGgGaAloD0MIswxxrEvhcUCUhpRSlGgVS4toFkdAoOqwtlI3BHV9lChoBmgJaA9DCH1Yb9TKBHBAlIaUUpRoFUuYaBZHQKDrKYOUdJd1fZQoaAZoCWgPQwjdtu9RP/hxQJSGlFKUaBVLwWgWR0Cg60mxMWXUdX2UKGgGaAloD0MIPSgoRSt8ckCUhpRSlGgVS7doFkdAoOtw4ffXPXV9lChoBmgJaA9DCNZvJqaL0W9AlIaUUpRoFUuSaBZHQKDrfJK8L8d1fZQoaAZoCWgPQwgvbw7X6m1xQJSGlFKUaBVLqGgWR0Cg6+SZ0CA+dX2UKGgGaAloD0MIiujX1g8Qc0CUhpRSlGgVS5hoFkdAoOvmO801qHV9lChoBmgJaA9DCGYv206b03JAlIaUUpRoFUuvaBZHQKDsQ4CIUJx1fZQoaAZoCWgPQwgVjiCV4s5wQJSGlFKUaBVLm2gWR0Cg7F0nw5NodX2UKGgGaAloD0MIEd+JWe/Yc0CUhpRSlGgVS7ZoFkdAoOyIf0VafXV9lChoBmgJaA9DCJ4kXTP5ynJAlIaUUpRoFUvHaBZHQKDssfHxSYR1fZQoaAZoCWgPQwgicY+lz+FxQJSGlFKUaBVLxWgWR0Cg7L0Gu9vkdX2UKGgGaAloD0MIyw9c5QlYb0CUhpRSlGgVS5VoFkdAoOzCNyYG+3V9lChoBmgJaA9DCDJaR1VTaHBAlIaUUpRoFUucaBZHQKDswPkq+al1fZQoaAZoCWgPQwg83uS36EZDQJSGlFKUaBVLWGgWR0Cg7NrqUu+RdX2UKGgGaAloD0MIhuP5DGgMckCUhpRSlGgVS5doFkdAoOz/ljmSyXV9lChoBmgJaA9DCImzImpibnFAlIaUUpRoFUuWaBZHQKDs98P4EfV1fZQoaAZoCWgPQwgFM6ZgzVdxQJSGlFKUaBVLoWgWR0Cg7RfYJ3PidX2UKGgGaAloD0MIDB6mfbNtckCUhpRSlGgVS+doFkdAoO0nAuZkTnV9lChoBmgJaA9DCE+xahCmy3BAlIaUUpRoFUu2aBZHQKDtQg13t8h1fZQoaAZoCWgPQwhv8fCeA2JwQJSGlFKUaBVLrGgWR0Cg7VJbt7a7dX2UKGgGaAloD0MI6s4TzxkzcUCUhpRSlGgVS7xoFkdAoO2YjIJZ4nV9lChoBmgJaA9DCLkcr0D0QXJAlIaUUpRoFUu1aBZHQKDtw1kUbkx1fZQoaAZoCWgPQwjuztpt15dxQJSGlFKUaBVLtmgWR0Cg7buPFNtZdX2UKGgGaAloD0MIiNf1C/aQckCUhpRSlGgVS8xoFkdAoO3s5uIhyXV9lChoBmgJaA9DCDIFa5zNkXFAlIaUUpRoFUuvaBZHQKDuAdxQzk91fZQoaAZoCWgPQwgdAHFXb05zQJSGlFKUaBVNGwFoFkdAoO5BnJ1aGHV9lChoBmgJaA9DCNasM77v53NAlIaUUpRoFUu6aBZHQKDuxedkJ8h1fZQoaAZoCWgPQwj+CpkrQyZyQJSGlFKUaBVLv2gWR0Cg7uMV1wHadX2UKGgGaAloD0MIb7vQXKeIc0CUhpRSlGgVS6loFkdAoO9oGr0aqHV9lChoBmgJaA9DCCuFQC4xMXFAlIaUUpRoFUuUaBZHQKDvnfpljEx1fZQoaAZoCWgPQwj2JLA5h6pxQJSGlFKUaBVLsWgWR0Cg77+YD1XedX2UKGgGaAloD0MIKsQj8TKpckCUhpRSlGgVS4JoFkdAoPAEkQf6oHV9lChoBmgJaA9DCFX5npHIW3BAlIaUUpRoFUuYaBZHQKDwHiPQv6F1fZQoaAZoCWgPQwhFn48yYsNxQJSGlFKUaBVLumgWR0Cg8Ce/xlQNdX2UKGgGaAloD0MIUaIlj2cGckCUhpRSlGgVS9loFkdAoPAwuAZsK3V9lChoBmgJaA9DCGDkZU3sXXJAlIaUUpRoFUvlaBZHQKDwQPuG9Ht1fZQoaAZoCWgPQwj8Ny9OPEhxQJSGlFKUaBVLn2gWR0Cg8Gi7CiyqdX2UKGgGaAloD0MIOdIZGHnFcECUhpRSlGgVS8BoFkdAoPBczqKP4nV9lChoBmgJaA9DCGy0HOjhA3NAlIaUUpRoFUvuaBZHQKDwiFX7tRh1fZQoaAZoCWgPQwjFG5lHvh1yQJSGlFKUaBVLu2gWR0Cg8KF2mpEQdX2UKGgGaAloD0MI4zPZP8/ycECUhpRSlGgVS6JoFkdAoPDcMd92HXV9lChoBmgJaA9DCD+qYb8n1XBAlIaUUpRoFUuqaBZHQKDxAZdfLLZ1fZQoaAZoCWgPQwi+bDttDRJwQJSGlFKUaBVLq2gWR0Cg8RPZRKpUdX2UKGgGaAloD0MIcctHUlIYcUCUhpRSlGgVS7BoFkdAoPFtfZ26kXV9lChoBmgJaA9DCNJWJZG96XBAlIaUUpRoFUuoaBZHQKDxh3j+7191fZQoaAZoCWgPQwibWUsBqadzQJSGlFKUaBVLsmgWR0Cg8Z1/2Cd0dX2UKGgGaAloD0MIO3KkMzDjcECUhpRSlGgVS7hoFkdAoPHUdT5wfnV9lChoBmgJaA9DCPUvSWUK2HBAlIaUUpRoFUuxaBZHQKDx03uuzQh1fZQoaAZoCWgPQwgrNBDLZqNyQJSGlFKUaBVLmWgWR0Cg8dmRmseXdX2UKGgGaAloD0MI97AXCtjacUCUhpRSlGgVS9ZoFkdAoPH3LPldT3V9lChoBmgJaA9DCDV/TGtTanJAlIaUUpRoFUvJaBZHQKDx9BD5TIh1fZQoaAZoCWgPQwjAIOnTqslyQJSGlFKUaBVLymgWR0Cg8h6ZH/cWdX2UKGgGaAloD0MIczCbAMNLc0CUhpRSlGgVS7NoFkdAoPJMVtXPq3V9lChoBmgJaA9DCBIvT+fKqnBAlIaUUpRoFUuqaBZHQKDyXAAQxvh1fZQoaAZoCWgPQwiU+rK0U+tyQJSGlFKUaBVLwmgWR0Cg8rE5IYm+dX2UKGgGaAloD0MIRn2SO2yySkCUhpRSlGgVS2VoFkdAoPK2Wa+ev3V9lChoBmgJaA9DCGA7GLGPTHNAlIaUUpRoFUvQaBZHQKDy5YdQwbl1fZQoaAZoCWgPQwhkJHuEmppyQJSGlFKUaBVLv2gWR0Cg8yWrn1WbdX2UKGgGaAloD0MIEMmQYyu/cECUhpRSlGgVS6toFkdAoPMm2NNrTHV9lChoBmgJaA9DCFMFo5J6w3FAlIaUUpRoFUuWaBZHQKDziIdELIB1fZQoaAZoCWgPQwj/lCpR9lBKQJSGlFKUaBVLb2gWR0Cg88bK7qY7dX2UKGgGaAloD0MI/KvHfavQcUCUhpRSlGgVS75oFkdAoPO6zPa+OHV9lChoBmgJaA9DCOhKBKq/UHNAlIaUUpRoFUusaBZHQKDzwdfb9Ih1fZQoaAZoCWgPQwjSxaaVQuZvQJSGlFKUaBVLl2gWR0Cg8+X5eqrBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 2048, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf188343b1713273210ff6befd57a32619cf938c5857852a514e9f514380411b
3
- size 205246
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7177274cf95b706be25cee9b48e911aea2285376e745f08ae4b755e6868bdca
3
+ size 198659
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 184.07008777008232, "std_reward": 69.57750614098263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T06:03:31.905974"}
 
1
+ {"mean_reward": 284.51684036643354, "std_reward": 16.287146930275824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:16:30.758576"}