File size: 96,178 Bytes
5f0a267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
2023-03-27 21:39:09.060122: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
--------------------------------------------------------------------------
WARNING: No preset parameters were found for the device that Open MPI
detected:
Local host: 192-9-155-93
Device name: mlx5_0
Device vendor ID: 0x02c9
Device vendor part ID: 4126
Default device parameters will be used, which may result in lower
performance. You can edit any of the files specified by the
btl_openib_device_param_files MCA parameter to set values for your
device.
NOTE: You can turn off this warning by setting the MCA parameter
btl_openib_warn_no_device_params_found to 0.
--------------------------------------------------------------------------
--------------------------------------------------------------------------
No OpenFabrics connection schemes reported that they were able to be
used on a specific port. As such, the openib BTL (OpenFabrics
support) will be disabled for this port.
Local host: 192-9-155-93
Local device: mlx5_0
Local port: 1
CPCs attempted: udcm
--------------------------------------------------------------------------
/home/ubuntu/.local/lib/python3.8/site-packages/pandas/core/computation/expressions.py:20: UserWarning: Pandas requires version '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installed).
from pandas.core.computation.check import NUMEXPR_INSTALLED
/home/ubuntu/.local/lib/python3.8/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/cuda/lib64')}
warn(msg)
/home/ubuntu/.local/lib/python3.8/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!
warn(msg)
Overriding torch_dtype=None with `torch_dtype=torch.float16` due to requirements of `bitsandbytes` to enable model loading in mixed int8. Either pass torch_dtype=torch.float16 or don't pass this argument at all to remove this warning.
===================================BUG REPORT===================================
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues
================================================================================
CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...
CUDA SETUP: Highest compute capability among GPUs detected: 8.6
CUDA SETUP: Detected CUDA version 117
CUDA SETUP: Loading binary /home/ubuntu/.local/lib/python3.8/site-packages/bitsandbytes/libbitsandbytes_cpu.so...
Training Alpaca-LoRA model with params:
base_model: /home/ubuntu/models/llama_7B/
data_path: ./alpaca_data_cleaned.json
output_dir: ./lora-alpaca
batch_size: 128
micro_batch_size: 32
num_epochs: 1
learning_rate: 0.0003
cutoff_len: 256
val_set_size: 2000
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: ['q_proj', 'v_proj']
train_on_inputs: True
group_by_length: False
resume_from_checkpoint: None
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:05<00:05, 5.18s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:07<00:00, 3.25s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:07<00:00, 3.54s/it]
Found cached dataset json (/home/ubuntu/.cache/huggingface/datasets/json/default-0b8c16dfa3eac6d6/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)
0%| | 0/1 [00:00<?, ?it/s]
100%|ββββββββββ| 1/1 [00:00<00:00, 690.88it/s]
Loading cached split indices for dataset at /home/ubuntu/.cache/huggingface/datasets/json/default-0b8c16dfa3eac6d6/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-3d375a2c1633d7cd.arrow and /home/ubuntu/.cache/huggingface/datasets/json/default-0b8c16dfa3eac6d6/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-31adcadc050eed84.arrow
trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199
Map: 0%| | 0/49759 [00:00<?, ? examples/s]
Map: 0%| | 148/49759 [00:00<00:33, 1461.68 examples/s]
Map: 1%| | 309/49759 [00:00<00:32, 1534.35 examples/s]
Map: 1%| | 533/49759 [00:00<00:32, 1505.02 examples/s]
Map: 2%|β | 755/49759 [00:00<00:32, 1492.32 examples/s]
Map: 2%|β | 910/49759 [00:00<00:32, 1505.82 examples/s]
Map: 2%|β | 1101/49759 [00:00<00:34, 1410.80 examples/s]
Map: 3%|β | 1255/49759 [00:00<00:33, 1444.57 examples/s]
Map: 3%|β | 1412/49759 [00:00<00:32, 1476.09 examples/s]
Map: 3%|β | 1572/49759 [00:01<00:31, 1510.14 examples/s]
Map: 3%|β | 1728/49759 [00:01<00:31, 1520.06 examples/s]
Map: 4%|β | 1891/49759 [00:01<00:30, 1547.20 examples/s]
Map: 4%|β | 2086/49759 [00:01<00:33, 1439.79 examples/s]
Map: 5%|β | 2243/49759 [00:01<00:32, 1471.01 examples/s]
Map: 5%|β | 2400/49759 [00:01<00:31, 1492.28 examples/s]
Map: 5%|β | 2555/49759 [00:01<00:31, 1505.38 examples/s]
Map: 6%|β | 2778/49759 [00:01<00:31, 1494.05 examples/s]
Map: 6%|β | 2931/49759 [00:01<00:31, 1501.03 examples/s]
Map: 6%|β | 3166/49759 [00:02<00:32, 1446.65 examples/s]
Map: 7%|β | 3323/49759 [00:02<00:31, 1474.75 examples/s]
Map: 7%|β | 3484/49759 [00:02<00:30, 1509.01 examples/s]
Map: 7%|β | 3706/49759 [00:02<00:30, 1495.99 examples/s]
Map: 8%|β | 3934/49759 [00:02<00:30, 1501.24 examples/s]
Map: 8%|β | 4158/49759 [00:02<00:31, 1436.23 examples/s]
Map: 9%|β | 4311/49759 [00:02<00:31, 1456.32 examples/s]
Map: 9%|β | 4465/49759 [00:03<00:30, 1475.97 examples/s]
Map: 9%|β | 4620/49759 [00:03<00:30, 1492.61 examples/s]
Map: 10%|β | 4778/49759 [00:03<00:29, 1511.86 examples/s]
Map: 10%|β | 5000/49759 [00:03<00:31, 1424.51 examples/s]
Map: 10%|β | 5157/49759 [00:03<00:30, 1459.65 examples/s]
Map: 11%|β | 5385/49759 [00:03<00:29, 1479.74 examples/s]
Map: 11%|β | 5537/49759 [00:03<00:29, 1487.88 examples/s]
Map: 12%|ββ | 5763/49759 [00:03<00:29, 1491.79 examples/s]
Map: 12%|ββ | 5922/49759 [00:03<00:28, 1512.70 examples/s]
Map: 12%|ββ | 6122/49759 [00:04<00:30, 1446.79 examples/s]
Map: 13%|ββ | 6279/49759 [00:04<00:29, 1471.25 examples/s]
Map: 13%|ββ | 6434/49759 [00:04<00:29, 1488.46 examples/s]
Map: 13%|ββ | 6593/49759 [00:04<00:28, 1510.77 examples/s]
Map: 14%|ββ | 6748/49759 [00:04<00:28, 1519.12 examples/s]
Map: 14%|ββ | 6910/49759 [00:04<00:27, 1544.21 examples/s]
Map: 14%|ββ | 7098/49759 [00:04<00:29, 1427.22 examples/s]
Map: 15%|ββ | 7256/49759 [00:04<00:29, 1465.16 examples/s]
Map: 15%|ββ | 7412/49759 [00:05<00:28, 1484.84 examples/s]
Map: 15%|ββ | 7569/49759 [00:05<00:28, 1505.47 examples/s]
Map: 16%|ββ | 7724/49759 [00:05<00:27, 1516.19 examples/s]
Map: 16%|ββ | 7882/49759 [00:05<00:27, 1528.42 examples/s]
Map: 16%|ββ | 8080/49759 [00:05<00:28, 1439.38 examples/s]
Map: 17%|ββ | 8235/49759 [00:05<00:28, 1464.57 examples/s]
Map: 17%|ββ | 8393/49759 [00:05<00:27, 1491.06 examples/s]
Map: 17%|ββ | 8551/49759 [00:05<00:27, 1512.74 examples/s]
Map: 18%|ββ | 8711/49759 [00:05<00:26, 1536.39 examples/s]
Map: 18%|ββ | 8874/49759 [00:05<00:26, 1560.51 examples/s]
Map: 18%|ββ | 9081/49759 [00:06<00:27, 1462.84 examples/s]
Map: 19%|ββ | 9240/49759 [00:06<00:27, 1492.93 examples/s]
Map: 19%|ββ | 9400/49759 [00:06<00:26, 1518.85 examples/s]
Map: 19%|ββ | 9564/49759 [00:06<00:25, 1550.65 examples/s]
Map: 20%|ββ | 9727/49759 [00:06<00:25, 1569.37 examples/s]
Map: 20%|ββ | 9956/49759 [00:06<00:25, 1552.13 examples/s]
Map: 20%|ββ | 10157/49759 [00:06<00:26, 1467.34 examples/s]
Map: 21%|ββ | 10314/49759 [00:06<00:26, 1491.89 examples/s]
Map: 21%|ββ | 10474/49759 [00:07<00:26, 1509.92 examples/s]
Map: 21%|βββ | 10629/49759 [00:07<00:25, 1512.56 examples/s]
Map: 22%|βββ | 10786/49759 [00:07<00:25, 1524.66 examples/s]
Map: 22%|βββ | 10948/49759 [00:07<00:25, 1547.32 examples/s]
Map: 22%|βββ | 11165/49759 [00:07<00:26, 1462.57 examples/s]
Map: 23%|βββ | 11323/49759 [00:07<00:25, 1489.68 examples/s]
Map: 23%|βββ | 11548/49759 [00:07<00:25, 1489.29 examples/s]
Map: 24%|βββ | 11711/49759 [00:07<00:25, 1521.17 examples/s]
Map: 24%|βββ | 11870/49759 [00:07<00:24, 1536.59 examples/s]
Map: 24%|βββ | 12077/49759 [00:08<00:26, 1441.30 examples/s]
Map: 25%|βββ | 12230/49759 [00:08<00:25, 1458.22 examples/s]
Map: 25%|βββ | 12394/49759 [00:08<00:24, 1501.59 examples/s]
Map: 25%|βββ | 12551/49759 [00:08<00:24, 1517.99 examples/s]
Map: 26%|βββ | 12710/49759 [00:08<00:24, 1537.17 examples/s]
Map: 26%|βββ | 12876/49759 [00:08<00:23, 1570.87 examples/s]
Map: 26%|βββ | 13082/49759 [00:08<00:24, 1475.60 examples/s]
Map: 27%|βββ | 13240/49759 [00:08<00:24, 1502.32 examples/s]
Map: 27%|βββ | 13397/49759 [00:08<00:23, 1518.67 examples/s]
Map: 27%|βββ | 13628/49759 [00:09<00:23, 1522.81 examples/s]
Map: 28%|βββ | 13855/49759 [00:09<00:23, 1514.07 examples/s]
Map: 28%|βββ | 14087/49759 [00:09<00:24, 1475.46 examples/s]
Map: 29%|βββ | 14240/49759 [00:09<00:23, 1487.44 examples/s]
Map: 29%|βββ | 14405/49759 [00:09<00:23, 1524.14 examples/s]
Map: 29%|βββ | 14560/49759 [00:09<00:23, 1528.00 examples/s]
Map: 30%|βββ | 14714/49759 [00:09<00:22, 1529.36 examples/s]
Map: 30%|βββ | 14870/49759 [00:09<00:22, 1532.63 examples/s]
Map: 30%|βββ | 15084/49759 [00:10<00:23, 1462.28 examples/s]
Map: 31%|βββ | 15248/49759 [00:10<00:22, 1508.17 examples/s]
Map: 31%|βββ | 15477/49759 [00:10<00:22, 1512.42 examples/s]
Map: 31%|ββββ | 15635/49759 [00:10<00:22, 1528.30 examples/s]
Map: 32%|ββββ | 15791/49759 [00:10<00:22, 1532.83 examples/s]
Map: 32%|ββββ | 16000/49759 [00:10<00:23, 1426.04 examples/s]
Map: 32%|ββββ | 16151/49759 [00:10<00:23, 1442.63 examples/s]
Map: 33%|ββββ | 16306/49759 [00:10<00:22, 1468.05 examples/s]
Map: 33%|ββββ | 16462/49759 [00:11<00:22, 1488.63 examples/s]
Map: 33%|ββββ | 16622/49759 [00:11<00:21, 1515.19 examples/s]
Map: 34%|ββββ | 16786/49759 [00:11<00:21, 1544.59 examples/s]
Map: 34%|ββββ | 17000/49759 [00:11<00:22, 1448.10 examples/s]
Map: 34%|ββββ | 17162/49759 [00:11<00:21, 1488.09 examples/s]
Map: 35%|ββββ | 17321/49759 [00:11<00:21, 1512.65 examples/s]
Map: 35%|ββββ | 17478/49759 [00:11<00:21, 1524.87 examples/s]
Map: 36%|ββββ | 17712/49759 [00:11<00:20, 1533.35 examples/s]
Map: 36%|ββββ | 17872/49759 [00:11<00:20, 1547.35 examples/s]
Map: 36%|ββββ | 18081/49759 [00:12<00:22, 1438.42 examples/s]
Map: 37%|ββββ | 18245/49759 [00:12<00:21, 1487.36 examples/s]
Map: 37%|ββββ | 18402/49759 [00:12<00:20, 1503.91 examples/s]
Map: 37%|ββββ | 18560/49759 [00:12<00:20, 1521.28 examples/s]
Map: 38%|ββββ | 18791/49759 [00:12<00:20, 1524.56 examples/s]
Map: 38%|ββββ | 19000/49759 [00:12<00:21, 1423.57 examples/s]
Map: 38%|ββββ | 19156/49759 [00:12<00:21, 1454.33 examples/s]
Map: 39%|ββββ | 19318/49759 [00:12<00:20, 1494.92 examples/s]
Map: 39%|ββββ | 19476/49759 [00:13<00:20, 1511.42 examples/s]
Map: 39%|ββββ | 19633/49759 [00:13<00:19, 1519.32 examples/s]
Map: 40%|ββββ | 19792/49759 [00:13<00:19, 1535.13 examples/s]
Map: 40%|ββββ | 19963/49759 [00:13<00:18, 1581.48 examples/s]
Map: 41%|ββββ | 20160/49759 [00:13<00:20, 1468.27 examples/s]
Map: 41%|ββββ | 20327/49759 [00:13<00:19, 1519.44 examples/s]
Map: 41%|ββββ | 20482/49759 [00:13<00:19, 1526.64 examples/s]
Map: 42%|βββββ | 20710/49759 [00:13<00:19, 1520.88 examples/s]
Map: 42%|βββββ | 20867/49759 [00:13<00:18, 1531.05 examples/s]
Map: 42%|βββββ | 21082/49759 [00:14<00:19, 1448.82 examples/s]
Map: 43%|βββββ | 21246/49759 [00:14<00:19, 1490.79 examples/s]
Map: 43%|βββββ | 21398/49759 [00:14<00:18, 1496.29 examples/s]
Map: 43%|βββββ | 21557/49759 [00:14<00:18, 1516.56 examples/s]
Map: 44%|βββββ | 21712/49759 [00:14<00:18, 1524.25 examples/s]
Map: 44%|βββββ | 21869/49759 [00:14<00:18, 1533.94 examples/s]
Map: 44%|βββββ | 22084/49759 [00:14<00:19, 1453.12 examples/s]
Map: 45%|βββββ | 22238/49759 [00:14<00:18, 1469.96 examples/s]
Map: 45%|βββββ | 22402/49759 [00:14<00:18, 1511.20 examples/s]
Map: 45%|βββββ | 22560/49759 [00:15<00:17, 1528.31 examples/s]
Map: 46%|βββββ | 22792/49759 [00:15<00:17, 1530.29 examples/s]
Map: 46%|βββββ | 22962/49759 [00:15<00:17, 1570.67 examples/s]
Map: 47%|βββββ | 23165/49759 [00:15<00:17, 1483.98 examples/s]
Map: 47%|βββββ | 23322/49759 [00:15<00:17, 1501.53 examples/s]
Map: 47%|βββββ | 23475/49759 [00:15<00:17, 1506.76 examples/s]
Map: 47%|βββββ | 23631/49759 [00:15<00:17, 1519.25 examples/s]
Map: 48%|βββββ | 23790/49759 [00:15<00:16, 1538.17 examples/s]
Map: 48%|βββββ | 23954/49759 [00:15<00:16, 1565.04 examples/s]
Map: 49%|βββββ | 24165/49759 [00:16<00:17, 1471.65 examples/s]
Map: 49%|βββββ | 24330/49759 [00:16<00:16, 1516.42 examples/s]
Map: 49%|βββββ | 24494/49759 [00:16<00:16, 1546.52 examples/s]
Map: 50%|βββββ | 24651/49759 [00:16<00:16, 1549.45 examples/s]
Map: 50%|βββββ | 24874/49759 [00:16<00:16, 1523.80 examples/s]
Map: 50%|βββββ | 25080/49759 [00:16<00:16, 1466.91 examples/s]
Map: 51%|βββββ | 25241/49759 [00:16<00:16, 1500.36 examples/s]
Map: 51%|βββββ | 25400/49759 [00:16<00:16, 1521.41 examples/s]
Map: 51%|ββββββ | 25560/49759 [00:17<00:15, 1541.08 examples/s]
Map: 52%|ββββββ | 25785/49759 [00:17<00:15, 1518.90 examples/s]
Map: 52%|ββββββ | 25944/49759 [00:17<00:15, 1533.32 examples/s]
Map: 53%|ββββββ | 26154/49759 [00:17<00:16, 1454.07 examples/s]
Map: 53%|ββββββ | 26303/49759 [00:17<00:16, 1459.50 examples/s]
Map: 53%|ββββββ | 26458/49759 [00:17<00:15, 1480.22 examples/s]
Map: 53%|ββββββ | 26618/49759 [00:17<00:15, 1507.92 examples/s]
Map: 54%|ββββββ | 26774/49759 [00:17<00:15, 1517.36 examples/s]
Map: 54%|ββββββ | 26929/49759 [00:17<00:14, 1525.25 examples/s]
Map: 55%|ββββββ | 27161/49759 [00:18<00:15, 1445.61 examples/s]
Map: 55%|ββββββ | 27312/49759 [00:18<00:15, 1459.39 examples/s]
Map: 55%|ββββββ | 27473/49759 [00:18<00:14, 1499.07 examples/s]
Map: 56%|ββββββ | 27635/49759 [00:18<00:14, 1524.25 examples/s]
Map: 56%|ββββββ | 27799/49759 [00:18<00:14, 1553.08 examples/s]
Map: 56%|ββββββ | 28000/49759 [00:18<00:15, 1442.68 examples/s]
Map: 57%|ββββββ | 28157/49759 [00:18<00:14, 1471.57 examples/s]
Map: 57%|ββββββ | 28311/49759 [00:18<00:14, 1489.07 examples/s]
Map: 57%|ββββββ | 28468/49759 [00:18<00:14, 1507.41 examples/s]
Map: 58%|ββββββ | 28630/49759 [00:19<00:13, 1538.68 examples/s]
Map: 58%|ββββββ | 28863/49759 [00:19<00:13, 1542.81 examples/s]
Map: 58%|ββββββ | 29076/49759 [00:19<00:14, 1439.39 examples/s]
Map: 59%|ββββββ | 29244/49759 [00:19<00:13, 1496.38 examples/s]
Map: 59%|ββββββ | 29406/49759 [00:19<00:13, 1526.94 examples/s]
Map: 60%|ββββββ | 29639/49759 [00:19<00:13, 1533.30 examples/s]
Map: 60%|ββββββ | 29795/49759 [00:19<00:12, 1537.15 examples/s]
Map: 60%|ββββββ | 30000/49759 [00:20<00:13, 1428.10 examples/s]
Map: 61%|ββββββ | 30167/49759 [00:20<00:13, 1485.50 examples/s]
Map: 61%|ββββββ | 30391/49759 [00:20<00:13, 1486.04 examples/s]
Map: 62%|βββββββ | 30608/49759 [00:20<00:13, 1464.26 examples/s]
Map: 62%|βββββββ | 30759/49759 [00:20<00:12, 1472.40 examples/s]
Map: 62%|βββββββ | 30913/49759 [00:20<00:12, 1487.57 examples/s]
Map: 63%|βββββββ | 31107/49759 [00:20<00:13, 1415.93 examples/s]
Map: 63%|βββββββ | 31323/49759 [00:20<00:12, 1422.70 examples/s]
Map: 63%|βββββββ | 31471/49759 [00:21<00:12, 1435.51 examples/s]
Map: 64%|βββββββ | 31630/49759 [00:21<00:12, 1470.62 examples/s]
Map: 64%|βββββββ | 31781/49759 [00:21<00:12, 1477.50 examples/s]
Map: 64%|βββββββ | 32000/49759 [00:21<00:12, 1383.11 examples/s]
Map: 65%|βββββββ | 32151/49759 [00:21<00:12, 1412.82 examples/s]
Map: 65%|βββββββ | 32302/49759 [00:21<00:12, 1434.75 examples/s]
Map: 65%|βββββββ | 32448/49759 [00:21<00:12, 1438.92 examples/s]
Map: 66%|βββββββ | 32597/49759 [00:21<00:11, 1449.08 examples/s]
Map: 66%|βββββββ | 32749/49759 [00:21<00:11, 1464.73 examples/s]
Map: 66%|βββββββ | 32966/49759 [00:22<00:11, 1454.59 examples/s]
Map: 67%|βββββββ | 33144/49759 [00:22<00:12, 1344.38 examples/s]
Map: 67%|βββββββ | 33294/49759 [00:22<00:11, 1380.61 examples/s]
Map: 67%|βββββββ | 33437/49759 [00:22<00:11, 1392.95 examples/s]
Map: 67%|βββββββ | 33581/49759 [00:22<00:11, 1403.74 examples/s]
Map: 68%|βββββββ | 33738/49759 [00:22<00:11, 1447.56 examples/s]
Map: 68%|βββββββ | 33892/49759 [00:22<00:10, 1470.84 examples/s]
Map: 68%|βββββββ | 34068/49759 [00:22<00:11, 1346.81 examples/s]
Map: 69%|βββββββ | 34217/49759 [00:22<00:11, 1378.55 examples/s]
Map: 69%|βββββββ | 34374/49759 [00:23<00:10, 1428.65 examples/s]
Map: 70%|βββββββ | 34595/49759 [00:23<00:10, 1441.12 examples/s]
Map: 70%|βββββββ | 34758/49759 [00:23<00:10, 1488.86 examples/s]
Map: 70%|βββββββ | 34981/49759 [00:23<00:09, 1485.90 examples/s]
Map: 71%|βββββββ | 35172/49759 [00:23<00:10, 1409.65 examples/s]
Map: 71%|βββββββ | 35319/49759 [00:23<00:10, 1421.35 examples/s]
Map: 71%|ββββββββ | 35471/49759 [00:23<00:09, 1446.35 examples/s]
Map: 72%|ββββββββ | 35622/49759 [00:23<00:09, 1460.99 examples/s]
Map: 72%|ββββββββ | 35847/49759 [00:24<00:09, 1471.39 examples/s]
Map: 72%|ββββββββ | 36000/49759 [00:24<00:09, 1407.99 examples/s]
Map: 73%|ββββββββ | 36151/49759 [00:24<00:09, 1432.90 examples/s]
Map: 73%|ββββββββ | 36302/49759 [00:24<00:09, 1453.42 examples/s]
Map: 73%|ββββββββ | 36450/49759 [00:24<00:09, 1457.46 examples/s]
Map: 74%|ββββββββ | 36604/49759 [00:24<00:08, 1476.12 examples/s]
Map: 74%|ββββββββ | 36761/49759 [00:24<00:08, 1500.63 examples/s]
Map: 74%|ββββββββ | 36981/49759 [00:24<00:08, 1484.58 examples/s]
Map: 75%|ββββββββ | 37167/49759 [00:25<00:09, 1392.53 examples/s]
Map: 75%|ββββββββ | 37310/49759 [00:25<00:08, 1400.74 examples/s]
Map: 75%|ββββββββ | 37462/49759 [00:25<00:08, 1430.42 examples/s]
Map: 76%|ββββββββ | 37613/49759 [00:25<00:08, 1448.34 examples/s]
Map: 76%|ββββββββ | 37765/49759 [00:25<00:08, 1465.88 examples/s]
Map: 76%|ββββββββ | 37919/49759 [00:25<00:07, 1485.05 examples/s]
Map: 77%|ββββββββ | 38102/49759 [00:25<00:08, 1379.56 examples/s]
Map: 77%|ββββββββ | 38255/49759 [00:25<00:08, 1416.78 examples/s]
Map: 77%|ββββββββ | 38476/49759 [00:25<00:07, 1436.27 examples/s]
Map: 78%|ββββββββ | 38626/49759 [00:26<00:07, 1450.09 examples/s]
Map: 78%|ββββββββ | 38773/49759 [00:26<00:07, 1452.91 examples/s]
Map: 78%|ββββββββ | 38932/49759 [00:26<00:07, 1489.86 examples/s]
Map: 79%|ββββββββ | 39085/49759 [00:26<00:07, 1413.04 examples/s]
Map: 79%|ββββββββ | 39239/49759 [00:26<00:07, 1442.47 examples/s]
Map: 79%|ββββββββ | 39393/49759 [00:26<00:07, 1467.62 examples/s]
Map: 79%|ββββββββ | 39553/49759 [00:26<00:06, 1503.47 examples/s]
Map: 80%|ββββββββ | 39709/49759 [00:26<00:06, 1517.76 examples/s]
Map: 80%|ββββββββ | 39947/49759 [00:26<00:06, 1540.18 examples/s]
Map: 81%|ββββββββ | 40156/49759 [00:27<00:06, 1429.01 examples/s]
Map: 81%|ββββββββ | 40319/49759 [00:27<00:06, 1476.75 examples/s]
Map: 81%|βββββββββ | 40475/49759 [00:27<00:06, 1496.48 examples/s]
Map: 82%|βββββββββ | 40647/49759 [00:27<00:05, 1554.45 examples/s]
Map: 82%|βββββββββ | 40877/49759 [00:27<00:05, 1544.46 examples/s]
Map: 83%|βββββββββ | 41076/49759 [00:27<00:05, 1455.04 examples/s]
Map: 83%|βββββββββ | 41234/49759 [00:27<00:05, 1480.30 examples/s]
Map: 83%|βββββββββ | 41396/49759 [00:27<00:05, 1515.94 examples/s]
Map: 84%|βββββββββ | 41553/49759 [00:27<00:05, 1529.05 examples/s]
Map: 84%|βββββββββ | 41713/49759 [00:28<00:05, 1545.42 examples/s]
Map: 84%|βββββββββ | 41880/49759 [00:28<00:04, 1577.18 examples/s]
Map: 85%|βββββββββ | 42082/49759 [00:28<00:05, 1475.54 examples/s]
Map: 85%|βββββββββ | 42247/49759 [00:28<00:04, 1518.74 examples/s]
Map: 85%|βββββββββ | 42403/49759 [00:28<00:04, 1528.72 examples/s]
Map: 86%|βββββββββ | 42563/49759 [00:28<00:04, 1542.81 examples/s]
Map: 86%|βββββββββ | 42722/49759 [00:28<00:04, 1553.78 examples/s]
Map: 86%|βββββββββ | 42880/49759 [00:28<00:04, 1552.14 examples/s]
Map: 87%|βββββββββ | 43078/49759 [00:28<00:04, 1431.76 examples/s]
Map: 87%|βββββββββ | 43243/49759 [00:29<00:04, 1485.90 examples/s]
Map: 87%|βββββββββ | 43403/49759 [00:29<00:04, 1515.88 examples/s]
Map: 88%|βββββββββ | 43563/49759 [00:29<00:04, 1535.19 examples/s]
Map: 88%|βββββββββ | 43719/49759 [00:29<00:03, 1540.39 examples/s]
Map: 88%|βββββββββ | 43944/49759 [00:29<00:03, 1523.30 examples/s]
Map: 89%|βββββββββ | 44157/49759 [00:29<00:03, 1442.43 examples/s]
Map: 89%|βββββββββ | 44307/49759 [00:29<00:03, 1454.36 examples/s]
Map: 89%|βββββββββ | 44456/49759 [00:29<00:03, 1461.10 examples/s]
Map: 90%|βββββββββ | 44607/49759 [00:30<00:03, 1468.74 examples/s]
Map: 90%|βββββββββ | 44766/49759 [00:30<00:03, 1498.89 examples/s]
Map: 90%|βββββββββ | 44920/49759 [00:30<00:03, 1509.43 examples/s]
Map: 91%|βββββββββ | 45075/49759 [00:30<00:03, 1406.22 examples/s]
Map: 91%|βββββββββ | 45232/49759 [00:30<00:03, 1449.74 examples/s]
Map: 91%|βββββββββ | 45388/49759 [00:30<00:02, 1479.69 examples/s]
Map: 92%|ββββββββββ| 45541/49759 [00:30<00:02, 1492.66 examples/s]
Map: 92%|ββββββββββ| 45692/49759 [00:30<00:02, 1495.27 examples/s]
Map: 92%|ββββββββββ| 45847/49759 [00:30<00:02, 1509.51 examples/s]
Map: 92%|ββββββββββ| 46000/49759 [00:30<00:02, 1415.19 examples/s]
Map: 93%|ββββββββββ| 46152/49759 [00:31<00:02, 1443.42 examples/s]
Map: 93%|ββββββββββ| 46305/49759 [00:31<00:02, 1465.45 examples/s]
Map: 93%|ββββββββββ| 46455/49759 [00:31<00:02, 1474.03 examples/s]
Map: 94%|ββββββββββ| 46612/49759 [00:31<00:02, 1499.66 examples/s]
Map: 94%|ββββββββββ| 46771/49759 [00:31<00:01, 1521.26 examples/s]
Map: 94%|ββββββββββ| 46991/49759 [00:31<00:01, 1490.61 examples/s]
Map: 95%|ββββββββββ| 47183/49759 [00:31<00:01, 1413.87 examples/s]
Map: 95%|ββββββββββ| 47340/49759 [00:31<00:01, 1449.01 examples/s]
Map: 95%|ββββββββββ| 47500/49759 [00:31<00:01, 1485.46 examples/s]
Map: 96%|ββββββββββ| 47653/49759 [00:32<00:01, 1493.31 examples/s]
Map: 96%|ββββββββββ| 47804/49759 [00:32<00:01, 1496.03 examples/s]
Map: 96%|ββββββββββ| 47958/49759 [00:32<00:01, 1506.93 examples/s]
Map: 97%|ββββββββββ| 48163/49759 [00:32<00:01, 1424.73 examples/s]
Map: 97%|ββββββββββ| 48318/49759 [00:32<00:00, 1453.87 examples/s]
Map: 97%|ββββββββββ| 48469/49759 [00:32<00:00, 1467.67 examples/s]
Map: 98%|ββββββββββ| 48691/49759 [00:32<00:00, 1465.38 examples/s]
Map: 98%|ββββββββββ| 48906/49759 [00:32<00:00, 1452.18 examples/s]
Map: 99%|ββββββββββ| 49091/49759 [00:33<00:00, 1374.51 examples/s]
Map: 99%|ββββββββββ| 49247/49759 [00:33<00:00, 1417.33 examples/s]
Map: 99%|ββββββββββ| 49416/49759 [00:33<00:00, 1481.57 examples/s]
Map: 100%|ββββββββββ| 49577/49759 [00:33<00:00, 1512.78 examples/s]
Map: 100%|ββββββββββ| 49737/49759 [00:33<00:00, 1536.10 examples/s]
Map: 0%| | 0/2000 [00:00<?, ? examples/s]
Map: 7%|β | 149/2000 [00:00<00:01, 1477.72 examples/s]
Map: 15%|ββ | 300/2000 [00:00<00:01, 1492.96 examples/s]
Map: 26%|βββ | 526/2000 [00:00<00:00, 1490.13 examples/s]
Map: 34%|ββββ | 684/2000 [00:00<00:00, 1520.07 examples/s]
Map: 42%|βββββ | 838/2000 [00:00<00:00, 1524.30 examples/s]
Map: 51%|βββββ | 1018/2000 [00:00<00:00, 1382.74 examples/s]
Map: 59%|ββββββ | 1175/2000 [00:00<00:00, 1430.32 examples/s]
Map: 67%|βββββββ | 1334/2000 [00:00<00:00, 1471.20 examples/s]
Map: 75%|ββββββββ | 1500/2000 [00:01<00:00, 1522.62 examples/s]
Map: 86%|βββββββββ | 1730/2000 [00:01<00:00, 1522.18 examples/s]
Map: 95%|ββββββββββ| 1893/2000 [00:01<00:00, 1548.07 examples/s]
0%| | 0/388 [00:00<?, ?it/s]
0%| | 1/388 [00:31<3:22:56, 31.46s/it]
1%| | 2/388 [01:02<3:21:57, 31.39s/it]
1%| | 3/388 [01:33<3:20:00, 31.17s/it]
1%| | 4/388 [02:06<3:23:25, 31.79s/it]
1%|β | 5/388 [02:38<3:23:30, 31.88s/it]
2%|β | 6/388 [03:11<3:25:17, 32.25s/it]
2%|β | 7/388 [03:44<3:26:23, 32.50s/it]
2%|β | 8/388 [04:17<3:25:54, 32.51s/it]
2%|β | 9/388 [04:50<3:26:30, 32.69s/it]
3%|β | 10/388 [05:22<3:24:49, 32.51s/it]
3%|β | 10/388 [05:22<3:24:49, 32.51s/it]
3%|β | 11/388 [05:54<3:23:33, 32.40s/it]
3%|β | 12/388 [06:27<3:24:20, 32.61s/it]
3%|β | 13/388 [07:00<3:24:49, 32.77s/it]
4%|β | 14/388 [07:33<3:24:52, 32.87s/it]
4%|β | 15/388 [08:06<3:24:19, 32.87s/it]
4%|β | 16/388 [08:39<3:24:16, 32.95s/it]
4%|β | 17/388 [09:11<3:21:45, 32.63s/it]
5%|β | 18/388 [09:42<3:18:50, 32.24s/it]
5%|β | 19/388 [10:16<3:20:07, 32.54s/it]
5%|β | 20/388 [10:49<3:20:13, 32.65s/it]
5%|β | 20/388 [10:49<3:20:13, 32.65s/it]
5%|β | 21/388 [11:22<3:20:34, 32.79s/it]
6%|β | 22/388 [11:55<3:20:38, 32.89s/it]
6%|β | 23/388 [12:28<3:20:31, 32.96s/it]
6%|β | 24/388 [12:58<3:15:24, 32.21s/it]
6%|β | 25/388 [13:31<3:15:35, 32.33s/it]
7%|β | 26/388 [14:04<3:16:32, 32.58s/it]
7%|β | 27/388 [14:35<3:13:42, 32.20s/it]
7%|β | 28/388 [15:09<3:14:53, 32.48s/it]
7%|β | 29/388 [15:41<3:14:32, 32.51s/it]
8%|β | 30/388 [16:14<3:15:08, 32.70s/it]
8%|β | 30/388 [16:14<3:15:08, 32.70s/it]
8%|β | 31/388 [16:47<3:14:48, 32.74s/it]
8%|β | 32/388 [17:20<3:14:00, 32.70s/it]
9%|β | 33/388 [17:53<3:14:11, 32.82s/it]
9%|β | 34/388 [18:25<3:12:25, 32.61s/it]
9%|β | 35/388 [18:58<3:12:49, 32.77s/it]
9%|β | 36/388 [19:30<3:10:11, 32.42s/it]
10%|β | 37/388 [20:02<3:09:30, 32.39s/it]
10%|β | 38/388 [20:35<3:10:16, 32.62s/it]
10%|β | 39/388 [21:08<3:09:13, 32.53s/it]
10%|β | 40/388 [21:40<3:08:02, 32.42s/it]
10%|β | 40/388 [21:40<3:08:02, 32.42s/it]
11%|β | 41/388 [22:09<3:01:35, 31.40s/it]
11%|β | 42/388 [22:42<3:04:02, 31.91s/it]
11%|β | 43/388 [23:15<3:05:36, 32.28s/it]
11%|ββ | 44/388 [23:48<3:06:31, 32.53s/it]
12%|ββ | 45/388 [24:20<3:04:50, 32.33s/it]
12%|ββ | 46/388 [24:53<3:05:50, 32.60s/it]
12%|ββ | 47/388 [25:26<3:05:44, 32.68s/it]
12%|ββ | 48/388 [25:59<3:05:53, 32.80s/it]
13%|ββ | 49/388 [26:31<3:03:43, 32.52s/it]
13%|ββ | 50/388 [27:03<3:02:29, 32.40s/it]
13%|ββ | 50/388 [27:03<3:02:29, 32.40s/it]
13%|ββ | 51/388 [27:36<3:03:07, 32.60s/it]
13%|ββ | 52/388 [28:09<3:02:09, 32.53s/it]
14%|ββ | 53/388 [28:42<3:02:35, 32.70s/it]
14%|ββ | 54/388 [29:12<2:57:59, 31.97s/it]
14%|ββ | 55/388 [29:44<2:58:10, 32.10s/it]
14%|ββ | 56/388 [30:18<2:59:30, 32.44s/it]
15%|ββ | 57/388 [30:51<3:00:06, 32.65s/it]
15%|ββ | 58/388 [31:24<3:00:21, 32.79s/it]
15%|ββ | 59/388 [31:57<3:00:22, 32.89s/it]
15%|ββ | 60/388 [32:30<3:00:16, 32.98s/it]
15%|ββ | 60/388 [32:30<3:00:16, 32.98s/it]
16%|ββ | 61/388 [33:02<2:58:41, 32.79s/it]
16%|ββ | 62/388 [33:36<2:58:44, 32.90s/it]
16%|ββ | 63/388 [34:09<2:58:26, 32.94s/it]
16%|ββ | 64/388 [34:42<2:58:31, 33.06s/it]
17%|ββ | 65/388 [35:15<2:58:12, 33.10s/it]
17%|ββ | 66/388 [35:48<2:57:36, 33.09s/it]
17%|ββ | 67/388 [36:22<2:57:16, 33.13s/it]
18%|ββ | 68/388 [36:55<2:56:50, 33.16s/it]
18%|ββ | 69/388 [37:26<2:54:00, 32.73s/it]
18%|ββ | 70/388 [37:58<2:51:12, 32.30s/it]
18%|ββ | 70/388 [37:58<2:51:12, 32.30s/it]
18%|ββ | 71/388 [38:31<2:51:36, 32.48s/it]
19%|ββ | 72/388 [39:03<2:50:23, 32.35s/it]
19%|ββ | 73/388 [39:32<2:45:43, 31.57s/it]
19%|ββ | 74/388 [40:05<2:46:14, 31.77s/it]
19%|ββ | 75/388 [40:37<2:46:02, 31.83s/it]
20%|ββ | 76/388 [41:09<2:46:45, 32.07s/it]
20%|ββ | 77/388 [41:42<2:47:09, 32.25s/it]
20%|ββ | 78/388 [42:15<2:47:12, 32.36s/it]
20%|ββ | 79/388 [42:46<2:45:09, 32.07s/it]
21%|ββ | 80/388 [43:19<2:45:44, 32.29s/it]
21%|ββ | 80/388 [43:19<2:45:44, 32.29s/it]
21%|ββ | 81/388 [43:50<2:43:26, 31.94s/it]
21%|ββ | 82/388 [44:20<2:40:48, 31.53s/it]
21%|βββ | 83/388 [44:53<2:42:10, 31.90s/it]
22%|βββ | 84/388 [45:26<2:42:48, 32.13s/it]
22%|βββ | 85/388 [45:58<2:41:46, 32.03s/it]
22%|βββ | 86/388 [46:29<2:40:20, 31.85s/it]
22%|βββ | 87/388 [47:02<2:40:59, 32.09s/it]
23%|βββ | 88/388 [47:33<2:39:45, 31.95s/it]
23%|βββ | 89/388 [48:06<2:40:36, 32.23s/it]
23%|βββ | 90/388 [48:37<2:38:01, 31.82s/it]
23%|βββ | 90/388 [48:37<2:38:01, 31.82s/it]
23%|βββ | 91/388 [49:09<2:37:37, 31.84s/it]
24%|βββ | 92/388 [49:42<2:38:31, 32.13s/it]
24%|βββ | 93/388 [50:15<2:39:06, 32.36s/it]
24%|βββ | 94/388 [50:47<2:39:06, 32.47s/it]
24%|βββ | 95/388 [51:20<2:37:56, 32.34s/it]
25%|βββ | 96/388 [51:52<2:37:53, 32.44s/it]
25%|βββ | 97/388 [52:23<2:35:15, 32.01s/it]
25%|βββ | 98/388 [52:56<2:35:33, 32.19s/it]
26%|βββ | 99/388 [53:27<2:34:01, 31.98s/it]
26%|βββ | 100/388 [53:58<2:32:06, 31.69s/it]
26%|βββ | 100/388 [53:58<2:32:06, 31.69s/it]
26%|βββ | 101/388 [54:31<2:33:09, 32.02s/it]
26%|βββ | 102/388 [55:04<2:33:37, 32.23s/it]
27%|βββ | 103/388 [55:37<2:33:46, 32.37s/it]
27%|βββ | 104/388 [56:09<2:32:50, 32.29s/it]
27%|βββ | 105/388 [56:41<2:32:48, 32.40s/it]
27%|βββ | 106/388 [57:14<2:32:53, 32.53s/it]
28%|βββ | 107/388 [57:46<2:31:36, 32.37s/it]
28%|βββ | 108/388 [58:19<2:31:26, 32.45s/it]
28%|βββ | 109/388 [58:50<2:28:38, 31.97s/it]
28%|βββ | 110/388 [59:22<2:29:14, 32.21s/it]
28%|βββ | 110/388 [59:22<2:29:14, 32.21s/it]
29%|βββ | 111/388 [59:53<2:26:47, 31.79s/it]
29%|βββ | 112/388 [1:00:26<2:27:33, 32.08s/it]
29%|βββ | 113/388 [1:00:59<2:28:07, 32.32s/it]
29%|βββ | 114/388 [1:01:31<2:27:11, 32.23s/it]
30%|βββ | 115/388 [1:02:04<2:27:30, 32.42s/it]
30%|βββ | 116/388 [1:02:36<2:27:25, 32.52s/it]
30%|βββ | 117/388 [1:03:09<2:27:13, 32.59s/it]
30%|βββ | 118/388 [1:03:42<2:26:40, 32.60s/it]
31%|βββ | 119/388 [1:04:15<2:26:27, 32.67s/it]
31%|βββ | 120/388 [1:04:48<2:26:12, 32.73s/it]
31%|βββ | 120/388 [1:04:48<2:26:12, 32.73s/it]
31%|βββ | 121/388 [1:05:20<2:24:59, 32.58s/it]
31%|ββββ | 122/388 [1:05:52<2:24:16, 32.54s/it]
32%|ββββ | 123/388 [1:06:25<2:23:59, 32.60s/it]
32%|ββββ | 124/388 [1:06:58<2:23:38, 32.64s/it]
32%|ββββ | 125/388 [1:07:29<2:20:56, 32.15s/it]
32%|ββββ | 126/388 [1:08:01<2:20:44, 32.23s/it]
33%|ββββ | 127/388 [1:08:32<2:19:03, 31.97s/it]
33%|ββββ | 128/388 [1:09:05<2:19:29, 32.19s/it]
33%|ββββ | 129/388 [1:09:36<2:17:29, 31.85s/it]
34%|ββββ | 130/388 [1:10:07<2:15:50, 31.59s/it]
34%|ββββ | 130/388 [1:10:07<2:15:50, 31.59s/it]
34%|ββββ | 131/388 [1:10:40<2:16:54, 31.96s/it]
34%|ββββ | 132/388 [1:11:13<2:17:12, 32.16s/it]
34%|ββββ | 133/388 [1:11:44<2:15:02, 31.78s/it]
35%|ββββ | 134/388 [1:12:15<2:14:18, 31.73s/it]
35%|ββββ | 135/388 [1:12:45<2:10:52, 31.04s/it]
35%|ββββ | 136/388 [1:13:14<2:07:57, 30.47s/it]
35%|ββββ | 137/388 [1:13:46<2:10:21, 31.16s/it]
36%|ββββ | 138/388 [1:14:18<2:10:51, 31.41s/it]
36%|ββββ | 139/388 [1:14:51<2:11:40, 31.73s/it]
36%|ββββ | 140/388 [1:15:22<2:10:19, 31.53s/it]
36%|ββββ | 140/388 [1:15:22<2:10:19, 31.53s/it]
36%|ββββ | 141/388 [1:15:55<2:11:09, 31.86s/it]
37%|ββββ | 142/388 [1:16:25<2:08:28, 31.34s/it]
37%|ββββ | 143/388 [1:16:57<2:09:39, 31.75s/it]
37%|ββββ | 144/388 [1:17:29<2:08:21, 31.57s/it]
37%|ββββ | 145/388 [1:18:00<2:07:00, 31.36s/it]
38%|ββββ | 146/388 [1:18:30<2:05:32, 31.13s/it]
38%|ββββ | 147/388 [1:19:03<2:07:01, 31.62s/it]
38%|ββββ | 148/388 [1:19:34<2:06:26, 31.61s/it]
38%|ββββ | 149/388 [1:20:07<2:07:00, 31.89s/it]
39%|ββββ | 150/388 [1:20:38<2:05:32, 31.65s/it]
39%|ββββ | 150/388 [1:20:38<2:05:32, 31.65s/it]
39%|ββββ | 151/388 [1:21:11<2:06:15, 31.96s/it]
39%|ββββ | 152/388 [1:21:43<2:05:32, 31.92s/it]
39%|ββββ | 153/388 [1:22:15<2:06:01, 32.18s/it]
40%|ββββ | 154/388 [1:22:47<2:04:21, 31.89s/it]
40%|ββββ | 155/388 [1:23:19<2:04:55, 32.17s/it]
40%|ββββ | 156/388 [1:23:51<2:03:30, 31.94s/it]
40%|ββββ | 157/388 [1:24:23<2:02:50, 31.91s/it]
41%|ββββ | 158/388 [1:24:55<2:03:01, 32.10s/it]
41%|ββββ | 159/388 [1:25:27<2:02:40, 32.14s/it]
41%|ββββ | 160/388 [1:26:00<2:02:54, 32.35s/it]
41%|ββββ | 160/388 [1:26:00<2:02:54, 32.35s/it]
41%|βββββ | 161/388 [1:26:33<2:02:50, 32.47s/it]
42%|βββββ | 162/388 [1:27:04<2:01:06, 32.15s/it]
42%|βββββ | 163/388 [1:27:37<2:01:15, 32.34s/it]
42%|βββββ | 164/388 [1:28:10<2:01:08, 32.45s/it]
43%|βββββ | 165/388 [1:28:42<1:59:48, 32.24s/it]
43%|βββββ | 166/388 [1:29:13<1:58:34, 32.05s/it]
43%|βββββ | 167/388 [1:29:43<1:55:52, 31.46s/it]
43%|βββββ | 168/388 [1:30:16<1:56:52, 31.88s/it]
44%|βββββ | 169/388 [1:30:49<1:57:17, 32.14s/it]
44%|βββββ | 170/388 [1:31:19<1:54:41, 31.57s/it]
44%|βββββ | 170/388 [1:31:19<1:54:41, 31.57s/it]
44%|βββββ | 171/388 [1:31:52<1:55:18, 31.88s/it]
44%|βββββ | 172/388 [1:32:23<1:54:14, 31.74s/it]
45%|βββββ | 173/388 [1:32:55<1:53:53, 31.78s/it]
45%|βββββ | 174/388 [1:33:26<1:52:47, 31.62s/it]
45%|βββββ | 175/388 [1:33:59<1:53:19, 31.92s/it]
45%|βββββ | 176/388 [1:34:30<1:51:36, 31.59s/it]
46%|βββββ | 177/388 [1:35:01<1:50:23, 31.39s/it]
46%|βββββ | 178/388 [1:35:33<1:51:19, 31.81s/it]
46%|βββββ | 179/388 [1:36:05<1:50:04, 31.60s/it]
46%|βββββ | 180/388 [1:36:37<1:50:24, 31.85s/it]
46%|βββββ | 180/388 [1:36:37<1:50:24, 31.85s/it]
47%|βββββ | 181/388 [1:37:10<1:50:46, 32.11s/it]
47%|βββββ | 182/388 [1:37:43<1:51:00, 32.33s/it]
47%|βββββ | 183/388 [1:38:15<1:50:53, 32.46s/it]
47%|βββββ | 184/388 [1:38:47<1:49:24, 32.18s/it]
48%|βββββ | 185/388 [1:39:20<1:49:25, 32.34s/it]
48%|βββββ | 186/388 [1:39:52<1:49:18, 32.47s/it]
48%|βββββ | 187/388 [1:40:23<1:47:24, 32.06s/it]
48%|βββββ | 188/388 [1:40:56<1:47:24, 32.22s/it]
49%|βββββ | 189/388 [1:41:27<1:45:51, 31.91s/it]
49%|βββββ | 190/388 [1:42:00<1:46:11, 32.18s/it]
49%|βββββ | 190/388 [1:42:00<1:46:11, 32.18s/it]
49%|βββββ | 191/388 [1:42:31<1:44:45, 31.90s/it]
49%|βββββ | 192/388 [1:43:04<1:44:30, 31.99s/it]
50%|βββββ | 193/388 [1:43:35<1:43:26, 31.83s/it]
50%|βββββ | 194/388 [1:44:08<1:43:42, 32.07s/it]
50%|βββββ | 195/388 [1:44:39<1:42:37, 31.90s/it]
51%|βββββ | 196/388 [1:45:12<1:42:49, 32.13s/it]
51%|βββββ | 197/388 [1:45:43<1:41:40, 31.94s/it]
51%|βββββ | 198/388 [1:46:15<1:40:42, 31.80s/it]
51%|ββββββ | 199/388 [1:46:47<1:41:02, 32.07s/it]
52%|ββββββ | 200/388 [1:47:19<1:40:02, 31.93s/it]
52%|ββββββ | 200/388 [1:47:19<1:40:02, 31.93s/it]{'loss': 2.2847, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.03}
{'loss': 2.2109, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.05}
{'loss': 1.9736, 'learning_rate': 8.699999999999999e-05, 'epoch': 0.08}
{'loss': 1.5818, 'learning_rate': 0.000117, 'epoch': 0.1}
{'loss': 1.2586, 'learning_rate': 0.000147, 'epoch': 0.13}
{'loss': 1.1373, 'learning_rate': 0.00017699999999999997, 'epoch': 0.15}
{'loss': 0.9888, 'learning_rate': 0.00020699999999999996, 'epoch': 0.18}
{'loss': 0.8617, 'learning_rate': 0.000237, 'epoch': 0.21}
{'loss': 0.8454, 'learning_rate': 0.000267, 'epoch': 0.23}
{'loss': 0.8458, 'learning_rate': 0.00029699999999999996, 'epoch': 0.26}
{'loss': 0.8341, 'learning_rate': 0.000290625, 'epoch': 0.28}
{'loss': 0.8218, 'learning_rate': 0.0002802083333333333, 'epoch': 0.31}
{'loss': 0.8304, 'learning_rate': 0.00026979166666666666, 'epoch': 0.33}
{'loss': 0.8161, 'learning_rate': 0.000259375, 'epoch': 0.36}
{'loss': 0.8097, 'learning_rate': 0.00024895833333333334, 'epoch': 0.39}
{'loss': 0.8134, 'learning_rate': 0.00023854166666666663, 'epoch': 0.41}
{'loss': 0.8214, 'learning_rate': 0.00022812499999999997, 'epoch': 0.44}
{'loss': 0.8095, 'learning_rate': 0.00021770833333333332, 'epoch': 0.46}
{'loss': 0.8028, 'learning_rate': 0.00020729166666666663, 'epoch': 0.49}
{'loss': 0.8014, 'learning_rate': 0.00019687499999999997, 'epoch': 0.51}
0%| | 0/250 [00:00<?, ?it/s][A
1%| | 2/250 [00:00<01:14, 3.31it/s][A
1%| | 3/250 [00:01<01:46, 2.31it/s][A
2%|β | 4/250 [00:01<01:58, 2.07it/s][A
2%|β | 5/250 [00:02<01:58, 2.06it/s][A
2%|β | 6/250 [00:02<02:04, 1.96it/s][A
3%|β | 7/250 [00:03<02:08, 1.90it/s][A
3%|β | 8/250 [00:03<02:11, 1.84it/s][A
4%|β | 9/250 [00:04<02:16, 1.77it/s][A
4%|β | 10/250 [00:05<02:05, 1.91it/s][A
4%|β | 11/250 [00:05<01:58, 2.01it/s][A
5%|β | 12/250 [00:06<02:06, 1.88it/s][A
5%|β | 13/250 [00:06<02:12, 1.79it/s][A
6%|β | 14/250 [00:07<02:00, 1.96it/s][A
6%|β | 15/250 [00:07<02:07, 1.85it/s][A
6%|β | 16/250 [00:08<02:11, 1.78it/s][A
7%|β | 17/250 [00:08<02:07, 1.83it/s][A
7%|β | 18/250 [00:09<02:05, 1.85it/s][A
8%|β | 19/250 [00:09<02:10, 1.77it/s][A
8%|β | 20/250 [00:10<02:05, 1.84it/s][A
8%|β | 21/250 [00:10<01:58, 1.93it/s][A
9%|β | 22/250 [00:11<01:52, 2.02it/s][A
9%|β | 23/250 [00:11<01:51, 2.03it/s][A
10%|β | 24/250 [00:12<01:59, 1.89it/s][A
10%|β | 25/250 [00:12<01:51, 2.02it/s][A
10%|β | 26/250 [00:13<01:51, 2.01it/s][A
11%|β | 27/250 [00:13<01:55, 1.92it/s][A
11%|β | 28/250 [00:14<01:50, 2.01it/s][A
12%|ββ | 29/250 [00:15<01:57, 1.88it/s][A
12%|ββ | 30/250 [00:15<02:02, 1.79it/s][A
12%|ββ | 31/250 [00:16<01:56, 1.88it/s][A
13%|ββ | 32/250 [00:16<02:01, 1.79it/s][A
13%|ββ | 33/250 [00:17<02:04, 1.74it/s][A
14%|ββ | 34/250 [00:17<01:57, 1.84it/s][A
14%|ββ | 35/250 [00:18<02:01, 1.77it/s][A
14%|ββ | 36/250 [00:18<01:57, 1.82it/s][A
15%|ββ | 37/250 [00:19<02:01, 1.76it/s][A
15%|ββ | 38/250 [00:20<02:03, 1.71it/s][A
16%|ββ | 39/250 [00:20<01:52, 1.88it/s][A
16%|ββ | 40/250 [00:21<01:56, 1.80it/s][A
16%|ββ | 41/250 [00:21<01:56, 1.79it/s][A
17%|ββ | 42/250 [00:22<01:59, 1.74it/s][A
17%|ββ | 43/250 [00:22<01:52, 1.83it/s][A
18%|ββ | 44/250 [00:23<01:56, 1.77it/s][A
18%|ββ | 45/250 [00:24<01:59, 1.72it/s][A
18%|ββ | 46/250 [00:24<01:56, 1.75it/s][A
19%|ββ | 47/250 [00:25<01:55, 1.76it/s][A
19%|ββ | 48/250 [00:25<01:51, 1.82it/s][A
20%|ββ | 49/250 [00:26<01:54, 1.76it/s][A
20%|ββ | 50/250 [00:26<01:47, 1.86it/s][A
20%|ββ | 51/250 [00:27<01:39, 2.01it/s][A
21%|ββ | 52/250 [00:27<01:40, 1.97it/s][A
21%|ββ | 53/250 [00:28<01:46, 1.85it/s][A
22%|βββ | 54/250 [00:28<01:46, 1.85it/s][A
22%|βββ | 55/250 [00:29<01:49, 1.77it/s][A
22%|βββ | 56/250 [00:30<01:52, 1.73it/s][A
23%|βββ | 57/250 [00:30<01:50, 1.75it/s][A
23%|βββ | 58/250 [00:31<01:45, 1.81it/s][A
24%|βββ | 59/250 [00:31<01:40, 1.91it/s][A
24%|βββ | 60/250 [00:32<01:32, 2.04it/s][A
24%|βββ | 61/250 [00:32<01:32, 2.04it/s][A
25%|βββ | 62/250 [00:33<01:36, 1.96it/s][A
25%|βββ | 63/250 [00:33<01:38, 1.90it/s][A
26%|βββ | 64/250 [00:34<01:36, 1.93it/s][A
26%|βββ | 65/250 [00:34<01:41, 1.83it/s][A
26%|βββ | 66/250 [00:35<01:33, 1.96it/s][A
27%|βββ | 67/250 [00:35<01:32, 1.98it/s][A
27%|βββ | 68/250 [00:36<01:24, 2.15it/s][A
28%|βββ | 69/250 [00:36<01:25, 2.12it/s][A
28%|βββ | 70/250 [00:36<01:23, 2.17it/s][A
28%|βββ | 71/250 [00:37<01:24, 2.12it/s][A
29%|βββ | 72/250 [00:38<01:31, 1.95it/s][A
29%|βββ | 73/250 [00:38<01:28, 2.00it/s][A
30%|βββ | 74/250 [00:39<01:33, 1.88it/s][A
30%|βββ | 75/250 [00:39<01:37, 1.79it/s][A
30%|βββ | 76/250 [00:40<01:40, 1.74it/s][A
31%|βββ | 77/250 [00:40<01:38, 1.76it/s][A
31%|βββ | 78/250 [00:41<01:39, 1.72it/s][A
32%|ββββ | 79/250 [00:42<01:39, 1.73it/s][A
32%|ββββ | 80/250 [00:42<01:40, 1.69it/s][A
32%|ββββ | 81/250 [00:43<01:41, 1.67it/s][A
33%|ββββ | 82/250 [00:43<01:34, 1.78it/s][A
33%|ββββ | 83/250 [00:44<01:36, 1.73it/s][A
34%|ββββ | 84/250 [00:44<01:30, 1.83it/s][A
34%|ββββ | 85/250 [00:45<01:28, 1.87it/s][A
34%|ββββ | 86/250 [00:45<01:28, 1.86it/s][A
35%|ββββ | 87/250 [00:46<01:21, 2.00it/s][A
35%|ββββ | 88/250 [00:46<01:22, 1.96it/s][A
36%|ββββ | 89/250 [00:47<01:25, 1.88it/s][A
36%|ββββ | 90/250 [00:48<01:29, 1.79it/s][A
36%|ββββ | 91/250 [00:48<01:31, 1.74it/s][A
37%|ββββ | 92/250 [00:49<01:30, 1.74it/s][A
37%|ββββ | 93/250 [00:49<01:22, 1.90it/s][A
38%|ββββ | 94/250 [00:50<01:26, 1.81it/s][A
38%|ββββ | 95/250 [00:50<01:28, 1.75it/s][A
38%|ββββ | 96/250 [00:51<01:29, 1.71it/s][A
39%|ββββ | 97/250 [00:52<01:30, 1.68it/s][A
39%|ββββ | 98/250 [00:52<01:30, 1.67it/s][A
40%|ββββ | 99/250 [00:53<01:19, 1.89it/s][A
40%|ββββ | 100/250 [00:53<01:15, 2.00it/s][A
40%|ββββ | 101/250 [00:54<01:17, 1.92it/s][A
41%|ββββ | 102/250 [00:54<01:18, 1.88it/s][A
41%|ββββ | 103/250 [00:55<01:15, 1.94it/s][A
42%|βββββ | 104/250 [00:55<01:19, 1.84it/s][A
42%|βββββ | 105/250 [00:56<01:13, 1.96it/s][A
42%|βββββ | 106/250 [00:56<01:05, 2.20it/s][A
43%|βββββ | 107/250 [00:57<01:08, 2.08it/s][A
43%|βββββ | 108/250 [00:57<01:11, 1.98it/s][A
44%|βββββ | 109/250 [00:58<01:10, 2.01it/s][A
44%|βββββ | 110/250 [00:58<01:09, 2.02it/s][A
44%|βββββ | 111/250 [00:59<01:13, 1.88it/s][A
45%|βββββ | 112/250 [00:59<01:11, 1.94it/s][A
45%|βββββ | 113/250 [01:00<01:14, 1.84it/s][A
46%|βββββ | 114/250 [01:00<01:12, 1.89it/s][A
46%|βββββ | 115/250 [01:01<01:09, 1.93it/s][A
46%|βββββ | 116/250 [01:01<01:05, 2.04it/s][A
47%|βββββ | 117/250 [01:02<01:10, 1.90it/s][A
47%|βββββ | 118/250 [01:02<01:07, 1.97it/s][A
48%|βββββ | 119/250 [01:03<01:10, 1.85it/s][A
48%|βββββ | 120/250 [01:04<01:13, 1.78it/s][A
48%|βββββ | 121/250 [01:04<01:12, 1.77it/s][A
49%|βββββ | 122/250 [01:05<01:08, 1.86it/s][A
49%|βββββ | 123/250 [01:05<01:11, 1.79it/s][A
50%|βββββ | 124/250 [01:06<01:08, 1.84it/s][A
50%|βββββ | 125/250 [01:06<01:09, 1.81it/s][A
50%|βββββ | 126/250 [01:07<01:11, 1.75it/s][A
51%|βββββ | 127/250 [01:08<01:12, 1.70it/s][A
51%|βββββ | 128/250 [01:08<01:12, 1.68it/s][A
52%|ββββββ | 129/250 [01:09<01:12, 1.66it/s][A
52%|ββββββ | 130/250 [01:09<01:08, 1.74it/s][A
52%|ββββββ | 131/250 [01:10<01:07, 1.75it/s][A
53%|ββββββ | 132/250 [01:10<01:09, 1.71it/s][A
53%|ββββββ | 133/250 [01:11<01:05, 1.79it/s][A
54%|ββββββ | 134/250 [01:11<01:00, 1.91it/s][A
54%|ββββββ | 135/250 [01:12<01:03, 1.82it/s][A
54%|ββββββ | 136/250 [01:13<01:04, 1.75it/s][A
55%|ββββββ | 137/250 [01:13<01:01, 1.83it/s][A
55%|ββββββ | 138/250 [01:14<01:01, 1.81it/s][A
56%|ββββββ | 139/250 [01:14<01:02, 1.76it/s][A
56%|ββββββ | 140/250 [01:15<00:58, 1.87it/s][A
56%|ββββββ | 141/250 [01:15<00:56, 1.93it/s][A
57%|ββββββ | 142/250 [01:16<00:59, 1.83it/s][A
57%|ββββββ | 143/250 [01:16<00:52, 2.02it/s][A
58%|ββββββ | 144/250 [01:17<00:56, 1.89it/s][A
58%|ββββββ | 145/250 [01:17<00:57, 1.84it/s][A
58%|ββββββ | 146/250 [01:18<00:52, 1.99it/s][A
59%|ββββββ | 147/250 [01:18<00:52, 1.96it/s][A
59%|ββββββ | 148/250 [01:19<00:51, 1.97it/s][A
60%|ββββββ | 149/250 [01:19<00:54, 1.85it/s][A
60%|ββββββ | 150/250 [01:20<00:54, 1.85it/s][A
60%|ββββββ | 151/250 [01:21<00:52, 1.88it/s][A
61%|ββββββ | 152/250 [01:21<00:52, 1.85it/s][A
61%|ββββββ | 153/250 [01:22<00:52, 1.85it/s][A
62%|βββββββ | 154/250 [01:22<00:51, 1.86it/s][A
62%|βββββββ | 155/250 [01:23<00:53, 1.78it/s][A
62%|βββββββ | 156/250 [01:23<00:54, 1.73it/s][A
63%|βββββββ | 157/250 [01:24<00:49, 1.90it/s][A
63%|βββββββ | 158/250 [01:24<00:49, 1.85it/s][A
64%|βββββββ | 159/250 [01:25<00:51, 1.78it/s][A
64%|βββββββ | 160/250 [01:26<00:51, 1.74it/s][A
64%|βββββββ | 161/250 [01:26<00:48, 1.83it/s][A
65%|βββββββ | 162/250 [01:27<00:49, 1.77it/s][A
65%|βββββββ | 163/250 [01:27<00:50, 1.72it/s][A
66%|βββββββ | 164/250 [01:28<00:48, 1.79it/s][A
66%|βββββββ | 165/250 [01:28<00:43, 1.96it/s][A
66%|βββββββ | 166/250 [01:29<00:39, 2.14it/s][A
67%|βββββββ | 167/250 [01:29<00:42, 1.96it/s][A
67%|βββββββ | 168/250 [01:30<00:44, 1.85it/s][A
68%|βββββββ | 169/250 [01:30<00:42, 1.91it/s][A
68%|βββββββ | 170/250 [01:31<00:43, 1.82it/s][A
68%|βββββββ | 171/250 [01:31<00:40, 1.95it/s][A
69%|βββββββ | 172/250 [01:32<00:39, 1.98it/s][A
69%|βββββββ | 173/250 [01:32<00:39, 1.93it/s][A
70%|βββββββ | 174/250 [01:33<00:40, 1.87it/s][A
70%|βββββββ | 175/250 [01:33<00:38, 1.93it/s][A
70%|βββββββ | 176/250 [01:34<00:37, 1.98it/s][A
71%|βββββββ | 177/250 [01:34<00:34, 2.10it/s][A
71%|βββββββ | 178/250 [01:35<00:34, 2.09it/s][A
72%|ββββββββ | 179/250 [01:35<00:36, 1.92it/s][A
72%|ββββββββ | 180/250 [01:36<00:38, 1.82it/s][A
72%|ββββββββ | 181/250 [01:37<00:37, 1.82it/s][A
73%|ββββββββ | 182/250 [01:37<00:35, 1.91it/s][A
73%|ββββββββ | 183/250 [01:38<00:35, 1.87it/s][A
74%|ββββββββ | 184/250 [01:38<00:36, 1.83it/s][A
74%|ββββββββ | 185/250 [01:39<00:32, 2.02it/s][A
74%|ββββββββ | 186/250 [01:39<00:33, 1.89it/s][A
75%|ββββββββ | 187/250 [01:40<00:31, 1.99it/s][A
75%|ββββββββ | 188/250 [01:40<00:29, 2.11it/s][A
76%|ββββββββ | 189/250 [01:41<00:31, 1.95it/s][A
76%|ββββββββ | 190/250 [01:41<00:32, 1.83it/s][A
76%|ββββββββ | 191/250 [01:42<00:33, 1.76it/s][A
77%|ββββββββ | 192/250 [01:42<00:33, 1.72it/s][A
77%|ββββββββ | 193/250 [01:43<00:33, 1.72it/s][A
78%|ββββββββ | 194/250 [01:44<00:33, 1.69it/s][A
78%|ββββββββ | 195/250 [01:44<00:29, 1.84it/s][A
78%|ββββββββ | 196/250 [01:45<00:28, 1.88it/s][A
79%|ββββββββ | 197/250 [01:45<00:27, 1.95it/s][A
79%|ββββββββ | 198/250 [01:46<00:27, 1.91it/s][A
80%|ββββββββ | 199/250 [01:46<00:25, 1.96it/s][A
80%|ββββββββ | 200/250 [01:47<00:26, 1.92it/s][A
80%|ββββββββ | 201/250 [01:47<00:25, 1.91it/s][A
81%|ββββββββ | 202/250 [01:48<00:24, 1.93it/s][A
81%|ββββββββ | 203/250 [01:48<00:23, 2.02it/s][A
82%|βββββββββ | 204/250 [01:49<00:24, 1.90it/s][A
82%|βββββββββ | 205/250 [01:49<00:24, 1.86it/s][A
82%|βββββββββ | 206/250 [01:50<00:23, 1.90it/s][A
83%|βββββββββ | 207/250 [01:50<00:21, 1.95it/s][A
83%|βββββββββ | 208/250 [01:51<00:20, 2.08it/s][A
84%|βββββββββ | 209/250 [01:51<00:21, 1.93it/s][A
84%|βββββββββ | 210/250 [01:52<00:21, 1.82it/s][A
84%|βββββββββ | 211/250 [01:52<00:22, 1.76it/s][A
85%|βββββββββ | 212/250 [01:53<00:21, 1.78it/s][A
85%|βββββββββ | 213/250 [01:53<00:19, 1.88it/s][A
86%|βββββββββ | 214/250 [01:54<00:19, 1.81it/s][A
86%|βββββββββ | 215/250 [01:55<00:20, 1.75it/s][A
86%|βββββββββ | 216/250 [01:55<00:19, 1.76it/s][A
87%|βββββββββ | 217/250 [01:56<00:17, 1.89it/s][A
87%|βββββββββ | 218/250 [01:56<00:15, 2.05it/s][A
88%|βββββββββ | 219/250 [01:57<00:14, 2.12it/s][A
88%|βββββββββ | 220/250 [01:57<00:13, 2.17it/s][A
88%|βββββββββ | 221/250 [01:57<00:13, 2.08it/s][A
89%|βββββββββ | 222/250 [01:58<00:12, 2.20it/s][A
89%|βββββββββ | 223/250 [01:58<00:12, 2.13it/s][A
90%|βββββββββ | 224/250 [01:59<00:13, 1.95it/s][A
90%|βββββββββ | 225/250 [01:59<00:12, 2.01it/s][A
90%|βββββββββ | 226/250 [02:00<00:12, 1.96it/s][A
91%|βββββββββ | 227/250 [02:01<00:11, 1.92it/s][A
91%|βββββββββ | 228/250 [02:01<00:10, 2.02it/s][A
92%|ββββββββββ| 229/250 [02:02<00:11, 1.88it/s][A
92%|ββββββββββ| 230/250 [02:02<00:11, 1.80it/s][A
92%|ββββββββββ| 231/250 [02:03<00:10, 1.88it/s][A
93%|ββββββββββ| 232/250 [02:03<00:09, 1.85it/s][A
93%|ββββββββββ| 233/250 [02:04<00:09, 1.78it/s][A
94%|ββββββββββ| 234/250 [02:04<00:08, 1.78it/s][A
94%|ββββββββββ| 235/250 [02:05<00:08, 1.78it/s][A
94%|ββββββββββ| 236/250 [02:06<00:08, 1.75it/s][A
95%|ββββββββββ| 237/250 [02:06<00:07, 1.74it/s][A
95%|ββββββββββ| 238/250 [02:07<00:07, 1.71it/s][A
96%|ββββββββββ| 239/250 [02:07<00:06, 1.68it/s][A
96%|ββββββββββ| 240/250 [02:08<00:06, 1.66it/s][A
96%|ββββββββββ| 241/250 [02:08<00:05, 1.77it/s][A
97%|ββββββββββ| 242/250 [02:09<00:04, 1.73it/s][A
97%|ββββββββββ| 243/250 [02:10<00:03, 1.77it/s][A
98%|ββββββββββ| 244/250 [02:10<00:03, 1.72it/s][A
98%|ββββββββββ| 245/250 [02:11<00:02, 1.69it/s][A
98%|ββββββββββ| 246/250 [02:11<00:02, 1.72it/s][A
99%|ββββββββββ| 247/250 [02:12<00:01, 1.96it/s][A
99%|ββββββββββ| 248/250 [02:12<00:01, 1.85it/s][A
100%|ββββββββββ| 249/250 [02:13<00:00, 1.79it/s][A
100%|ββββββββββ| 250/250 [02:13<00:00, 1.82it/s][A
[A
52%|ββββββ | 200/388 [1:49:34<1:40:02, 31.93s/it]
100%|ββββββββββ| 250/250 [02:14<00:00, 1.82it/s][A
[A
52%|ββββββ | 201/388 [1:50:06<3:46:06, 72.55s/it]
52%|ββββββ | 202/388 [1:50:39<3:07:53, 60.61s/it]
52%|ββββββ | 203/388 [1:51:11<2:40:15, 51.97s/it]
53%|ββββββ | 204/388 [1:51:43<2:20:54, 45.95s/it]
53%|ββββββ | 205/388 [1:52:16<2:08:05, 42.00s/it]
53%|ββββββ | 206/388 [1:52:48<1:58:28, 39.06s/it]
53%|ββββββ | 207/388 [1:53:19<1:50:41, 36.69s/it]
54%|ββββββ | 208/388 [1:53:48<1:43:30, 34.50s/it]
54%|ββββββ | 209/388 [1:54:19<1:39:29, 33.35s/it]
54%|ββββββ | 210/388 [1:54:52<1:38:19, 33.14s/it]
54%|ββββββ | 210/388 [1:54:52<1:38:19, 33.14s/it]
54%|ββββββ | 211/388 [1:55:24<1:37:25, 33.02s/it]
55%|ββββββ | 212/388 [1:55:57<1:36:39, 32.95s/it]
55%|ββββββ | 213/388 [1:56:30<1:35:57, 32.90s/it]
55%|ββββββ | 214/388 [1:57:03<1:35:16, 32.85s/it]
55%|ββββββ | 215/388 [1:57:35<1:34:35, 32.80s/it]
56%|ββββββ | 216/388 [1:58:07<1:32:48, 32.37s/it]
56%|ββββββ | 217/388 [1:58:39<1:32:02, 32.29s/it]
56%|ββββββ | 218/388 [1:59:12<1:31:49, 32.41s/it]
56%|ββββββ | 219/388 [1:59:43<1:30:42, 32.20s/it]
57%|ββββββ | 220/388 [2:00:16<1:30:37, 32.37s/it]
57%|ββββββ | 220/388 [2:00:16<1:30:37, 32.37s/it]
57%|ββββββ | 221/388 [2:00:49<1:30:27, 32.50s/it]
57%|ββββββ | 222/388 [2:01:21<1:29:42, 32.42s/it]
57%|ββββββ | 223/388 [2:01:53<1:29:07, 32.41s/it]
58%|ββββββ | 224/388 [2:02:26<1:28:57, 32.55s/it]
58%|ββββββ | 225/388 [2:02:58<1:27:58, 32.38s/it]
58%|ββββββ | 226/388 [2:03:31<1:27:41, 32.48s/it]
59%|ββββββ | 227/388 [2:04:04<1:27:16, 32.52s/it]
59%|ββββββ | 228/388 [2:04:35<1:25:45, 32.16s/it]
59%|ββββββ | 229/388 [2:05:07<1:24:47, 32.00s/it]
59%|ββββββ | 230/388 [2:05:38<1:23:46, 31.81s/it]
59%|ββββββ | 230/388 [2:05:38<1:23:46, 31.81s/it]
60%|ββββββ | 231/388 [2:06:10<1:23:31, 31.92s/it]
60%|ββββββ | 232/388 [2:06:43<1:23:24, 32.08s/it]
60%|ββββββ | 233/388 [2:07:15<1:22:46, 32.04s/it]
60%|ββββββ | 234/388 [2:07:47<1:22:19, 32.08s/it]
61%|ββββββ | 235/388 [2:08:19<1:21:53, 32.12s/it]
61%|ββββββ | 236/388 [2:08:51<1:21:16, 32.08s/it]
61%|ββββββ | 237/388 [2:09:24<1:21:13, 32.27s/it]
61%|βββββββ | 238/388 [2:09:56<1:20:59, 32.40s/it]
62%|βββββββ | 239/388 [2:10:29<1:20:33, 32.44s/it]
62%|βββββββ | 240/388 [2:11:01<1:20:03, 32.45s/it]
62%|βββββββ | 240/388 [2:11:01<1:20:03, 32.45s/it]
62%|βββββββ | 241/388 [2:11:33<1:19:08, 32.30s/it]
62%|βββββββ | 242/388 [2:12:06<1:18:41, 32.34s/it]
63%|βββββββ | 243/388 [2:12:38<1:18:15, 32.38s/it]
63%|βββββββ | 244/388 [2:13:11<1:18:02, 32.51s/it]
63%|βββββββ | 245/388 [2:13:44<1:17:34, 32.55s/it]
63%|βββββββ | 246/388 [2:14:16<1:17:06, 32.58s/it]
64%|βββββββ | 247/388 [2:14:48<1:16:05, 32.38s/it]
64%|βββββββ | 248/388 [2:15:21<1:15:48, 32.49s/it]
64%|βββββββ | 249/388 [2:15:53<1:14:49, 32.30s/it]
64%|βββββββ | 250/388 [2:16:25<1:14:04, 32.21s/it]
64%|βββββββ | 250/388 [2:16:25<1:14:04, 32.21s/it]
65%|βββββββ | 251/388 [2:16:57<1:13:39, 32.26s/it]
65%|βββββββ | 252/388 [2:17:30<1:13:27, 32.41s/it]
65%|βββββββ | 253/388 [2:18:02<1:12:34, 32.26s/it]
65%|βββββββ | 254/388 [2:18:32<1:10:46, 31.69s/it]
66%|βββββββ | 255/388 [2:19:05<1:10:46, 31.93s/it]
66%|βββββββ | 256/388 [2:19:36<1:09:58, 31.81s/it]
66%|βββββββ | 257/388 [2:20:09<1:09:56, 32.03s/it]
66%|βββββββ | 258/388 [2:20:41<1:09:12, 31.94s/it]
67%|βββββββ | 259/388 [2:21:13<1:09:09, 32.17s/it]
67%|βββββββ | 260/388 [2:21:45<1:08:07, 31.93s/it]
67%|βββββββ | 260/388 [2:21:45<1:08:07, 31.93s/it]
67%|βββββββ | 261/388 [2:22:17<1:08:09, 32.20s/it]
68%|βββββββ | 262/388 [2:22:50<1:07:57, 32.36s/it]
68%|βββββββ | 263/388 [2:23:23<1:07:39, 32.48s/it]
68%|βββββββ | 264/388 [2:23:54<1:06:20, 32.10s/it]
68%|βββββββ | 265/388 [2:24:24<1:04:43, 31.57s/it]
69%|βββββββ | 266/388 [2:24:57<1:04:54, 31.92s/it]
69%|βββββββ | 267/388 [2:25:30<1:04:50, 32.15s/it]
69%|βββββββ | 268/388 [2:26:02<1:04:31, 32.26s/it]
69%|βββββββ | 269/388 [2:26:34<1:03:38, 32.09s/it]
70%|βββββββ | 270/388 [2:27:07<1:03:35, 32.33s/it]
70%|βββββββ | 270/388 [2:27:07<1:03:35, 32.33s/it]
70%|βββββββ | 271/388 [2:27:39<1:02:56, 32.28s/it]
70%|βββββββ | 272/388 [2:28:10<1:01:47, 31.96s/it]
70%|βββββββ | 273/388 [2:28:43<1:01:39, 32.17s/it]
71%|βββββββ | 274/388 [2:29:13<59:53, 31.52s/it]
71%|βββββββ | 275/388 [2:29:46<1:00:03, 31.89s/it]
71%|βββββββ | 276/388 [2:30:19<1:00:03, 32.17s/it]
71%|ββββββββ | 277/388 [2:30:50<59:15, 32.03s/it]
72%|ββββββββ | 278/388 [2:31:23<58:52, 32.11s/it]
72%|ββββββββ | 279/388 [2:31:55<58:40, 32.30s/it]
72%|ββββββββ | 280/388 [2:32:28<58:24, 32.45s/it]
72%|ββββββββ | 280/388 [2:32:28<58:24, 32.45s/it]
72%|ββββββββ | 281/388 [2:33:01<57:48, 32.42s/it]
73%|ββββββββ | 282/388 [2:33:33<57:25, 32.50s/it]
73%|ββββββββ | 283/388 [2:34:06<57:03, 32.60s/it]
73%|ββββββββ | 284/388 [2:34:39<56:30, 32.60s/it]
73%|ββββββββ | 285/388 [2:35:11<56:02, 32.64s/it]
74%|ββββββββ | 286/388 [2:35:44<55:13, 32.49s/it]
74%|ββββββββ | 287/388 [2:36:16<54:37, 32.45s/it]
74%|ββββββββ | 288/388 [2:36:48<53:41, 32.21s/it]
74%|ββββββββ | 289/388 [2:37:19<52:39, 31.91s/it]
75%|ββββββββ | 290/388 [2:37:52<52:32, 32.17s/it]
75%|ββββββββ | 290/388 [2:37:52<52:32, 32.17s/it]
75%|ββββββββ | 291/388 [2:38:24<52:19, 32.37s/it]
75%|ββββββββ | 292/388 [2:38:55<51:03, 31.91s/it]
76%|ββββββββ | 293/388 [2:39:26<50:07, 31.66s/it]
76%|ββββββββ | 294/388 [2:39:59<50:07, 31.99s/it]
76%|ββββββββ | 295/388 [2:40:30<48:52, 31.54s/it]
76%|ββββββββ | 296/388 [2:41:01<48:25, 31.58s/it]
77%|ββββββββ | 297/388 [2:41:34<48:28, 31.97s/it]
77%|ββββββββ | 298/388 [2:42:07<48:17, 32.19s/it]
77%|ββββββββ | 299/388 [2:42:40<48:00, 32.37s/it]
77%|ββββββββ | 300/388 [2:43:12<47:37, 32.47s/it]
77%|ββββββββ | 300/388 [2:43:12<47:37, 32.47s/it]
78%|ββββββββ | 301/388 [2:43:45<47:10, 32.54s/it]
78%|ββββββββ | 302/388 [2:44:15<45:36, 31.81s/it]
78%|ββββββββ | 303/388 [2:44:48<45:27, 32.09s/it]
78%|ββββββββ | 304/388 [2:45:20<44:53, 32.07s/it]
79%|ββββββββ | 305/388 [2:45:52<44:22, 32.08s/it]
79%|ββββββββ | 306/388 [2:46:24<43:48, 32.06s/it]
79%|ββββββββ | 307/388 [2:46:55<42:56, 31.81s/it]
79%|ββββββββ | 308/388 [2:47:27<42:14, 31.68s/it]
80%|ββββββββ | 309/388 [2:47:59<42:08, 32.00s/it]
80%|ββββββββ | 310/388 [2:48:31<41:32, 31.96s/it]
80%|ββββββββ | 310/388 [2:48:31<41:32, 31.96s/it]
80%|ββββββββ | 311/388 [2:49:03<41:04, 32.01s/it]
80%|ββββββββ | 312/388 [2:49:36<40:49, 32.23s/it]
81%|ββββββββ | 313/388 [2:50:09<40:28, 32.38s/it]
81%|ββββββββ | 314/388 [2:50:41<40:02, 32.46s/it]
81%|ββββββββ | 315/388 [2:51:13<39:15, 32.26s/it]
81%|βββββββββ | 316/388 [2:51:46<38:53, 32.40s/it]
82%|βββββββββ | 317/388 [2:52:19<38:28, 32.51s/it]
82%|βββββββββ | 318/388 [2:52:50<37:38, 32.27s/it]
82%|βββββββββ | 319/388 [2:53:23<37:20, 32.46s/it]
82%|βββββββββ | 320/388 [2:53:56<36:55, 32.59s/it]
82%|βββββββββ | 320/388 [2:53:56<36:55, 32.59s/it]
83%|βββββββββ | 321/388 [2:54:29<36:24, 32.61s/it]
83%|βββββββββ | 322/388 [2:55:00<35:12, 32.01s/it]
83%|βββββββββ | 323/388 [2:55:31<34:34, 31.91s/it]
84%|βββββββββ | 324/388 [2:56:01<33:28, 31.38s/it]
84%|βββββββββ | 325/388 [2:56:34<33:23, 31.80s/it]
84%|βββββββββ | 326/388 [2:57:06<32:49, 31.77s/it]
84%|βββββββββ | 327/388 [2:57:37<32:03, 31.53s/it]
85%|βββββββββ | 328/388 [2:58:07<31:15, 31.25s/it]
85%|βββββββββ | 329/388 [2:58:40<31:08, 31.67s/it]
85%|βββββββββ | 330/388 [2:59:13<30:58, 32.04s/it]
85%|βββββββββ | 330/388 [2:59:13<30:58, 32.04s/it]
85%|βββββββββ | 331/388 [2:59:46<30:38, 32.25s/it]
86%|βββββββββ | 332/388 [3:00:18<30:10, 32.33s/it]
86%|βββββββββ | 333/388 [3:00:51<29:40, 32.37s/it]
86%|βββββββββ | 334/388 [3:01:23<29:09, 32.39s/it]
86%|βββββββββ | 335/388 [3:01:56<28:42, 32.49s/it]
87%|βββββββββ | 336/388 [3:02:27<27:53, 32.18s/it]
87%|βββββββββ | 337/388 [3:03:00<27:29, 32.35s/it]
87%|βββββββββ | 338/388 [3:03:33<27:01, 32.42s/it]
87%|βββββββββ | 339/388 [3:04:01<25:31, 31.26s/it]
88%|βββββββββ | 340/388 [3:04:33<25:01, 31.29s/it]
88%|βββββββββ | 340/388 [3:04:33<25:01, 31.29s/it]
88%|βββββββββ | 341/388 [3:05:04<24:39, 31.48s/it]
88%|βββββββββ | 342/388 [3:05:37<24:26, 31.88s/it]
88%|βββββββββ | 343/388 [3:06:09<23:58, 31.96s/it]
89%|βββββββββ | 344/388 [3:06:42<23:36, 32.19s/it]
89%|βββββββββ | 345/388 [3:07:14<23:03, 32.18s/it]
89%|βββββββββ | 346/388 [3:07:47<22:38, 32.33s/it]
89%|βββββββββ | 347/388 [3:08:18<21:50, 31.95s/it]
90%|βββββββββ | 348/388 [3:08:51<21:28, 32.20s/it]
90%|βββββββββ | 349/388 [3:09:22<20:40, 31.80s/it]
90%|βββββββββ | 350/388 [3:09:54<20:19, 32.08s/it]
90%|βββββββββ | 350/388 [3:09:54<20:19, 32.08s/it]
90%|βββββββββ | 351/388 [3:10:26<19:36, 31.81s/it]
91%|βββββββββ | 352/388 [3:10:58<19:15, 32.10s/it]
91%|βββββββββ | 353/388 [3:11:31<18:51, 32.32s/it]
91%|βββββββββ | 354/388 [3:12:04<18:21, 32.40s/it]
91%|ββββββββββ| 355/388 [3:12:34<17:24, 31.65s/it]
92%|ββββββββββ| 356/388 [3:13:07<17:04, 32.01s/it]
92%|ββββββββββ| 357/388 [3:13:38<16:29, 31.92s/it]
92%|ββββββββββ| 358/388 [3:14:10<15:58, 31.94s/it]
93%|ββββββββββ| 359/388 [3:14:43<15:32, 32.17s/it]
93%|ββββββββββ| 360/388 [3:15:13<14:43, 31.56s/it]
93%|ββββββββββ| 360/388 [3:15:13<14:43, 31.56s/it]
93%|ββββββββββ| 361/388 [3:15:46<14:21, 31.92s/it]
93%|ββββββββββ| 362/388 [3:16:19<13:57, 32.21s/it]
94%|ββββββββββ| 363/388 [3:16:51<13:29, 32.36s/it]
94%|ββββββββββ| 364/388 [3:17:24<12:59, 32.48s/it]
94%|ββββββββββ| 365/388 [3:17:57<12:27, 32.49s/it]
94%|ββββββββββ| 366/388 [3:18:29<11:55, 32.55s/it]
95%|ββββββββββ| 367/388 [3:19:01<11:19, 32.34s/it]
95%|ββββββββββ| 368/388 [3:19:32<10:39, 31.98s/it]
95%|ββββββββββ| 369/388 [3:20:05<10:10, 32.11s/it]
95%|ββββββββββ| 370/388 [3:20:37<09:38, 32.16s/it]
95%|ββββββββββ| 370/388 [3:20:37<09:38, 32.16s/it]
96%|ββββββββββ| 371/388 [3:21:10<09:08, 32.27s/it]
96%|ββββββββββ| 372/388 [3:21:42<08:37, 32.32s/it]
96%|ββββββββββ| 373/388 [3:22:14<08:04, 32.29s/it]
96%|ββββββββββ| 374/388 [3:22:44<07:22, 31.58s/it]
97%|ββββββββββ| 375/388 [3:23:15<06:48, 31.43s/it]
97%|ββββββββββ| 376/388 [3:23:48<06:21, 31.76s/it]
97%|ββββββββββ| 377/388 [3:24:19<05:46, 31.54s/it]
97%|ββββββββββ| 378/388 [3:24:52<05:19, 31.91s/it]
98%|ββββββββββ| 379/388 [3:25:24<04:48, 32.09s/it]
98%|ββββββββββ| 380/388 [3:25:57<04:18, 32.31s/it]
98%|ββββββββββ| 380/388 [3:25:57<04:18, 32.31s/it]
98%|ββββββββββ| 381/388 [3:26:29<03:46, 32.37s/it]
98%|ββββββββββ| 382/388 [3:27:02<03:14, 32.46s/it]
99%|ββββββββββ| 383/388 [3:27:33<02:39, 31.94s/it]
99%|ββββββββββ| 384/388 [3:28:06<02:08, 32.19s/it]
99%|ββββββββββ| 385/388 [3:28:37<01:36, 32.07s/it]
99%|ββββββββββ| 386/388 [3:29:10<01:04, 32.27s/it]
100%|ββββββββββ| 387/388 [3:29:42<00:32, 32.09s/it]
100%|ββββββββββ| 388/388 [3:30:15<00:00, 32.27s/it]There were missing keys in the checkpoint model loaded: ['base_model.model.model.embed_tokens.weight', 'base_model.model.model.layers.0.self_attn.q_proj.weight', 'base_model.model.model.layers.0.self_attn.k_proj.weight', 'base_model.model.model.layers.0.self_attn.v_proj.weight', 'base_model.model.model.layers.0.self_attn.o_proj.weight', 'base_model.model.model.layers.0.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.0.mlp.gate_proj.weight', 'base_model.model.model.layers.0.mlp.down_proj.weight', 'base_model.model.model.layers.0.mlp.up_proj.weight', 'base_model.model.model.layers.0.input_layernorm.weight', 'base_model.model.model.layers.0.post_attention_layernorm.weight', 'base_model.model.model.layers.1.self_attn.q_proj.weight', 'base_model.model.model.layers.1.self_attn.k_proj.weight', 'base_model.model.model.layers.1.self_attn.v_proj.weight', 'base_model.model.model.layers.1.self_attn.o_proj.weight', 'base_model.model.model.layers.1.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.1.mlp.gate_proj.weight', 'base_model.model.model.layers.1.mlp.down_proj.weight', 'base_model.model.model.layers.1.mlp.up_proj.weight', 'base_model.model.model.layers.1.input_layernorm.weight', 'base_model.model.model.layers.1.post_attention_layernorm.weight', 'base_model.model.model.layers.2.self_attn.q_proj.weight', 'base_model.model.model.layers.2.self_attn.k_proj.weight', 'base_model.model.model.layers.2.self_attn.v_proj.weight', 'base_model.model.model.layers.2.self_attn.o_proj.weight', 'base_model.model.model.layers.2.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.2.mlp.gate_proj.weight', 'base_model.model.model.layers.2.mlp.down_proj.weight', 'base_model.model.model.layers.2.mlp.up_proj.weight', 'base_model.model.model.layers.2.input_layernorm.weight', 'base_model.model.model.layers.2.post_attention_layernorm.weight', 'base_model.model.model.layers.3.self_attn.q_proj.weight', 'base_model.model.model.layers.3.self_attn.k_proj.weight', 'base_model.model.model.layers.3.self_attn.v_proj.weight', 'base_model.model.model.layers.3.self_attn.o_proj.weight', 'base_model.model.model.layers.3.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.3.mlp.gate_proj.weight', 'base_model.model.model.layers.3.mlp.down_proj.weight', 'base_model.model.model.layers.3.mlp.up_proj.weight', 'base_model.model.model.layers.3.input_layernorm.weight', 'base_model.model.model.layers.3.post_attention_layernorm.weight', 'base_model.model.model.layers.4.self_attn.q_proj.weight', 'base_model.model.model.layers.4.self_attn.k_proj.weight', 'base_model.model.model.layers.4.self_attn.v_proj.weight', 'base_model.model.model.layers.4.self_attn.o_proj.weight', 'base_model.model.model.layers.4.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.4.mlp.gate_proj.weight', 'base_model.model.model.layers.4.mlp.down_proj.weight', 'base_model.model.model.layers.4.mlp.up_proj.weight', 'base_model.model.model.layers.4.input_layernorm.weight', 'base_model.model.model.layers.4.post_attention_layernorm.weight', 'base_model.model.model.layers.5.self_attn.q_proj.weight', 'base_model.model.model.layers.5.self_attn.k_proj.weight', 'base_model.model.model.layers.5.self_attn.v_proj.weight', 'base_model.model.model.layers.5.self_attn.o_proj.weight', 'base_model.model.model.layers.5.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.5.mlp.gate_proj.weight', 'base_model.model.model.layers.5.mlp.down_proj.weight', 'base_model.model.model.layers.5.mlp.up_proj.weight', 'base_model.model.model.layers.5.input_layernorm.weight', 'base_model.model.model.layers.5.post_attention_layernorm.weight', 'base_model.model.model.layers.6.self_attn.q_proj.weight', 'base_model.model.model.layers.6.self_attn.k_proj.weight', 'base_model.model.model.layers.6.self_attn.v_proj.weight', 'base_model.model.model.layers.6.self_attn.o_proj.weight', 'base_model.model.model.layers.6.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.6.mlp.gate_proj.weight', 'base_model.model.model.layers.6.mlp.down_proj.weight', 'base_model.model.model.layers.6.mlp.up_proj.weight', 'base_model.model.model.layers.6.input_layernorm.weight', 'base_model.model.model.layers.6.post_attention_layernorm.weight', 'base_model.model.model.layers.7.self_attn.q_proj.weight', 'base_model.model.model.layers.7.self_attn.k_proj.weight', 'base_model.model.model.layers.7.self_attn.v_proj.weight', 'base_model.model.model.layers.7.self_attn.o_proj.weight', 'base_model.model.model.layers.7.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.7.mlp.gate_proj.weight', 'base_model.model.model.layers.7.mlp.down_proj.weight', 'base_model.model.model.layers.7.mlp.up_proj.weight', 'base_model.model.model.layers.7.input_layernorm.weight', 'base_model.model.model.layers.7.post_attention_layernorm.weight', 'base_model.model.model.layers.8.self_attn.q_proj.weight', 'base_model.model.model.layers.8.self_attn.k_proj.weight', 'base_model.model.model.layers.8.self_attn.v_proj.weight', 'base_model.model.model.layers.8.self_attn.o_proj.weight', 'base_model.model.model.layers.8.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.8.mlp.gate_proj.weight', 'base_model.model.model.layers.8.mlp.down_proj.weight', 'base_model.model.model.layers.8.mlp.up_proj.weight', 'base_model.model.model.layers.8.input_layernorm.weight', 'base_model.model.model.layers.8.post_attention_layernorm.weight', 'base_model.model.model.layers.9.self_attn.q_proj.weight', 'base_model.model.model.layers.9.self_attn.k_proj.weight', 'base_model.model.model.layers.9.self_attn.v_proj.weight', 'base_model.model.model.layers.9.self_attn.o_proj.weight', 'base_model.model.model.layers.9.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.9.mlp.gate_proj.weight', 'base_model.model.model.layers.9.mlp.down_proj.weight', 'base_model.model.model.layers.9.mlp.up_proj.weight', 'base_model.model.model.layers.9.input_layernorm.weight', 'base_model.model.model.layers.9.post_attention_layernorm.weight', 'base_model.model.model.layers.10.self_attn.q_proj.weight', 'base_model.model.model.layers.10.self_attn.k_proj.weight', 'base_model.model.model.layers.10.self_attn.v_proj.weight', 'base_model.model.model.layers.10.self_attn.o_proj.weight', 'base_model.model.model.layers.10.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.10.mlp.gate_proj.weight', 'base_model.model.model.layers.10.mlp.down_proj.weight', 'base_model.model.model.layers.10.mlp.up_proj.weight', 'base_model.model.model.layers.10.input_layernorm.weight', 'base_model.model.model.layers.10.post_attention_layernorm.weight', 'base_model.model.model.layers.11.self_attn.q_proj.weight', 'base_model.model.model.layers.11.self_attn.k_proj.weight', 'base_model.model.model.layers.11.self_attn.v_proj.weight', 'base_model.model.model.layers.11.self_attn.o_proj.weight', 'base_model.model.model.layers.11.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.11.mlp.gate_proj.weight', 'base_model.model.model.layers.11.mlp.down_proj.weight', 'base_model.model.model.layers.11.mlp.up_proj.weight', 'base_model.model.model.layers.11.input_layernorm.weight', 'base_model.model.model.layers.11.post_attention_layernorm.weight', 'base_model.model.model.layers.12.self_attn.q_proj.weight', 'base_model.model.model.layers.12.self_attn.k_proj.weight', 'base_model.model.model.layers.12.self_attn.v_proj.weight', 'base_model.model.model.layers.12.self_attn.o_proj.weight', 'base_model.model.model.layers.12.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.12.mlp.gate_proj.weight', 'base_model.model.model.layers.12.mlp.down_proj.weight', 'base_model.model.model.layers.12.mlp.up_proj.weight', 'base_model.model.model.layers.12.input_layernorm.weight', 'base_model.model.model.layers.12.post_attention_layernorm.weight', 'base_model.model.model.layers.13.self_attn.q_proj.weight', 'base_model.model.model.layers.13.self_attn.k_proj.weight', 'base_model.model.model.layers.13.self_attn.v_proj.weight', 'base_model.model.model.layers.13.self_attn.o_proj.weight', 'base_model.model.model.layers.13.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.13.mlp.gate_proj.weight', 'base_model.model.model.layers.13.mlp.down_proj.weight', 'base_model.model.model.layers.13.mlp.up_proj.weight', 'base_model.model.model.layers.13.input_layernorm.weight', 'base_model.model.model.layers.13.post_attention_layernorm.weight', 'base_model.model.model.layers.14.self_attn.q_proj.weight', 'base_model.model.model.layers.14.self_attn.k_proj.weight', 'base_model.model.model.layers.14.self_attn.v_proj.weight', 'base_model.model.model.layers.14.self_attn.o_proj.weight', 'base_model.model.model.layers.14.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.14.mlp.gate_proj.weight', 'base_model.model.model.layers.14.mlp.down_proj.weight', 'base_model.model.model.layers.14.mlp.up_proj.weight', 'base_model.model.model.layers.14.input_layernorm.weight', 'base_model.model.model.layers.14.post_attention_layernorm.weight', 'base_model.model.model.layers.15.self_attn.q_proj.weight', 'base_model.model.model.layers.15.self_attn.k_proj.weight', 'base_model.model.model.layers.15.self_attn.v_proj.weight', 'base_model.model.model.layers.15.self_attn.o_proj.weight', 'base_model.model.model.layers.15.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.15.mlp.gate_proj.weight', 'base_model.model.model.layers.15.mlp.down_proj.weight', 'base_model.model.model.layers.15.mlp.up_proj.weight', 'base_model.model.model.layers.15.input_layernorm.weight', 'base_model.model.model.layers.15.post_attention_layernorm.weight', 'base_model.model.model.layers.16.self_attn.q_proj.weight', 'base_model.model.model.layers.16.self_attn.k_proj.weight', 'base_model.model.model.layers.16.self_attn.v_proj.weight', 'base_model.model.model.layers.16.self_attn.o_proj.weight', 'base_model.model.model.layers.16.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.16.mlp.gate_proj.weight', 'base_model.model.model.layers.16.mlp.down_proj.weight', 'base_model.model.model.layers.16.mlp.up_proj.weight', 'base_model.model.model.layers.16.input_layernorm.weight', 'base_model.model.model.layers.16.post_attention_layernorm.weight', 'base_model.model.model.layers.17.self_attn.q_proj.weight', 'base_model.model.model.layers.17.self_attn.k_proj.weight', 'base_model.model.model.layers.17.self_attn.v_proj.weight', 'base_model.model.model.layers.17.self_attn.o_proj.weight', 'base_model.model.model.layers.17.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.17.mlp.gate_proj.weight', 'base_model.model.model.layers.17.mlp.down_proj.weight', 'base_model.model.model.layers.17.mlp.up_proj.weight', 'base_model.model.model.layers.17.input_layernorm.weight', 'base_model.model.model.layers.17.post_attention_layernorm.weight', 'base_model.model.model.layers.18.self_attn.q_proj.weight', 'base_model.model.model.layers.18.self_attn.k_proj.weight', 'base_model.model.model.layers.18.self_attn.v_proj.weight', 'base_model.model.model.layers.18.self_attn.o_proj.weight', 'base_model.model.model.layers.18.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.18.mlp.gate_proj.weight', 'base_model.model.model.layers.18.mlp.down_proj.weight', 'base_model.model.model.layers.18.mlp.up_proj.weight', 'base_model.model.model.layers.18.input_layernorm.weight', 'base_model.model.model.layers.18.post_attention_layernorm.weight', 'base_model.model.model.layers.19.self_attn.q_proj.weight', 'base_model.model.model.layers.19.self_attn.k_proj.weight', 'base_model.model.model.layers.19.self_attn.v_proj.weight', 'base_model.model.model.layers.19.self_attn.o_proj.weight', 'base_model.model.model.layers.19.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.19.mlp.gate_proj.weight', 'base_model.model.model.layers.19.mlp.down_proj.weight', 'base_model.model.model.layers.19.mlp.up_proj.weight', 'base_model.model.model.layers.19.input_layernorm.weight', 'base_model.model.model.layers.19.post_attention_layernorm.weight', 'base_model.model.model.layers.20.self_attn.q_proj.weight', 'base_model.model.model.layers.20.self_attn.k_proj.weight', 'base_model.model.model.layers.20.self_attn.v_proj.weight', 'base_model.model.model.layers.20.self_attn.o_proj.weight', 'base_model.model.model.layers.20.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.20.mlp.gate_proj.weight', 'base_model.model.model.layers.20.mlp.down_proj.weight', 'base_model.model.model.layers.20.mlp.up_proj.weight', 'base_model.model.model.layers.20.input_layernorm.weight', 'base_model.model.model.layers.20.post_attention_layernorm.weight', 'base_model.model.model.layers.21.self_attn.q_proj.weight', 'base_model.model.model.layers.21.self_attn.k_proj.weight', 'base_model.model.model.layers.21.self_attn.v_proj.weight', 'base_model.model.model.layers.21.self_attn.o_proj.weight', 'base_model.model.model.layers.21.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.21.mlp.gate_proj.weight', 'base_model.model.model.layers.21.mlp.down_proj.weight', 'base_model.model.model.layers.21.mlp.up_proj.weight', 'base_model.model.model.layers.21.input_layernorm.weight', 'base_model.model.model.layers.21.post_attention_layernorm.weight', 'base_model.model.model.layers.22.self_attn.q_proj.weight', 'base_model.model.model.layers.22.self_attn.k_proj.weight', 'base_model.model.model.layers.22.self_attn.v_proj.weight', 'base_model.model.model.layers.22.self_attn.o_proj.weight', 'base_model.model.model.layers.22.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.22.mlp.gate_proj.weight', 'base_model.model.model.layers.22.mlp.down_proj.weight', 'base_model.model.model.layers.22.mlp.up_proj.weight', 'base_model.model.model.layers.22.input_layernorm.weight', 'base_model.model.model.layers.22.post_attention_layernorm.weight', 'base_model.model.model.layers.23.self_attn.q_proj.weight', 'base_model.model.model.layers.23.self_attn.k_proj.weight', 'base_model.model.model.layers.23.self_attn.v_proj.weight', 'base_model.model.model.layers.23.self_attn.o_proj.weight', 'base_model.model.model.layers.23.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.23.mlp.gate_proj.weight', 'base_model.model.model.layers.23.mlp.down_proj.weight', 'base_model.model.model.layers.23.mlp.up_proj.weight', 'base_model.model.model.layers.23.input_layernorm.weight', 'base_model.model.model.layers.23.post_attention_layernorm.weight', 'base_model.model.model.layers.24.self_attn.q_proj.weight', 'base_model.model.model.layers.24.self_attn.k_proj.weight', 'base_model.model.model.layers.24.self_attn.v_proj.weight', 'base_model.model.model.layers.24.self_attn.o_proj.weight', 'base_model.model.model.layers.24.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.24.mlp.gate_proj.weight', 'base_model.model.model.layers.24.mlp.down_proj.weight', 'base_model.model.model.layers.24.mlp.up_proj.weight', 'base_model.model.model.layers.24.input_layernorm.weight', 'base_model.model.model.layers.24.post_attention_layernorm.weight', 'base_model.model.model.layers.25.self_attn.q_proj.weight', 'base_model.model.model.layers.25.self_attn.k_proj.weight', 'base_model.model.model.layers.25.self_attn.v_proj.weight', 'base_model.model.model.layers.25.self_attn.o_proj.weight', 'base_model.model.model.layers.25.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.25.mlp.gate_proj.weight', 'base_model.model.model.layers.25.mlp.down_proj.weight', 'base_model.model.model.layers.25.mlp.up_proj.weight', 'base_model.model.model.layers.25.input_layernorm.weight', 'base_model.model.model.layers.25.post_attention_layernorm.weight', 'base_model.model.model.layers.26.self_attn.q_proj.weight', 'base_model.model.model.layers.26.self_attn.k_proj.weight', 'base_model.model.model.layers.26.self_attn.v_proj.weight', 'base_model.model.model.layers.26.self_attn.o_proj.weight', 'base_model.model.model.layers.26.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.26.mlp.gate_proj.weight', 'base_model.model.model.layers.26.mlp.down_proj.weight', 'base_model.model.model.layers.26.mlp.up_proj.weight', 'base_model.model.model.layers.26.input_layernorm.weight', 'base_model.model.model.layers.26.post_attention_layernorm.weight', 'base_model.model.model.layers.27.self_attn.q_proj.weight', 'base_model.model.model.layers.27.self_attn.k_proj.weight', 'base_model.model.model.layers.27.self_attn.v_proj.weight', 'base_model.model.model.layers.27.self_attn.o_proj.weight', 'base_model.model.model.layers.27.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.27.mlp.gate_proj.weight', 'base_model.model.model.layers.27.mlp.down_proj.weight', 'base_model.model.model.layers.27.mlp.up_proj.weight', 'base_model.model.model.layers.27.input_layernorm.weight', 'base_model.model.model.layers.27.post_attention_layernorm.weight', 'base_model.model.model.layers.28.self_attn.q_proj.weight', 'base_model.model.model.layers.28.self_attn.k_proj.weight', 'base_model.model.model.layers.28.self_attn.v_proj.weight', 'base_model.model.model.layers.28.self_attn.o_proj.weight', 'base_model.model.model.layers.28.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.28.mlp.gate_proj.weight', 'base_model.model.model.layers.28.mlp.down_proj.weight', 'base_model.model.model.layers.28.mlp.up_proj.weight', 'base_model.model.model.layers.28.input_layernorm.weight', 'base_model.model.model.layers.28.post_attention_layernorm.weight', 'base_model.model.model.layers.29.self_attn.q_proj.weight', 'base_model.model.model.layers.29.self_attn.k_proj.weight', 'base_model.model.model.layers.29.self_attn.v_proj.weight', 'base_model.model.model.layers.29.self_attn.o_proj.weight', 'base_model.model.model.layers.29.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.29.mlp.gate_proj.weight', 'base_model.model.model.layers.29.mlp.down_proj.weight', 'base_model.model.model.layers.29.mlp.up_proj.weight', 'base_model.model.model.layers.29.input_layernorm.weight', 'base_model.model.model.layers.29.post_attention_layernorm.weight', 'base_model.model.model.layers.30.self_attn.q_proj.weight', 'base_model.model.model.layers.30.self_attn.k_proj.weight', 'base_model.model.model.layers.30.self_attn.v_proj.weight', 'base_model.model.model.layers.30.self_attn.o_proj.weight', 'base_model.model.model.layers.30.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.30.mlp.gate_proj.weight', 'base_model.model.model.layers.30.mlp.down_proj.weight', 'base_model.model.model.layers.30.mlp.up_proj.weight', 'base_model.model.model.layers.30.input_layernorm.weight', 'base_model.model.model.layers.30.post_attention_layernorm.weight', 'base_model.model.model.layers.31.self_attn.q_proj.weight', 'base_model.model.model.layers.31.self_attn.k_proj.weight', 'base_model.model.model.layers.31.self_attn.v_proj.weight', 'base_model.model.model.layers.31.self_attn.o_proj.weight', 'base_model.model.model.layers.31.self_attn.rotary_emb.inv_freq', 'base_model.model.model.layers.31.mlp.gate_proj.weight', 'base_model.model.model.layers.31.mlp.down_proj.weight', 'base_model.model.model.layers.31.mlp.up_proj.weight', 'base_model.model.model.layers.31.input_layernorm.weight', 'base_model.model.model.layers.31.post_attention_layernorm.weight', 'base_model.model.model.norm.weight', 'base_model.model.lm_head.0.weight'].
100%|ββββββββββ| 388/388 [3:30:15<00:00, 32.27s/it]
100%|ββββββββββ| 388/388 [3:30:15<00:00, 32.51s/it]
{'eval_loss': 0.8030890822410583, 'eval_runtime': 134.5586, 'eval_samples_per_second': 14.863, 'eval_steps_per_second': 1.858, 'epoch': 0.51}
{'loss': 0.8163, 'learning_rate': 0.00018645833333333332, 'epoch': 0.54}
{'loss': 0.8108, 'learning_rate': 0.00017604166666666666, 'epoch': 0.57}
{'loss': 0.8037, 'learning_rate': 0.000165625, 'epoch': 0.59}
{'loss': 0.8034, 'learning_rate': 0.00015520833333333334, 'epoch': 0.62}
{'loss': 0.8068, 'learning_rate': 0.00014479166666666666, 'epoch': 0.64}
{'loss': 0.7987, 'learning_rate': 0.000134375, 'epoch': 0.67}
{'loss': 0.8053, 'learning_rate': 0.00012395833333333332, 'epoch': 0.69}
{'loss': 0.8025, 'learning_rate': 0.00011354166666666666, 'epoch': 0.72}
{'loss': 0.8061, 'learning_rate': 0.00010312499999999999, 'epoch': 0.75}
{'loss': 0.8152, 'learning_rate': 9.270833333333333e-05, 'epoch': 0.77}
{'loss': 0.7909, 'learning_rate': 8.229166666666667e-05, 'epoch': 0.8}
{'loss': 0.8092, 'learning_rate': 7.1875e-05, 'epoch': 0.82}
{'loss': 0.7899, 'learning_rate': 6.145833333333333e-05, 'epoch': 0.85}
{'loss': 0.7995, 'learning_rate': 5.104166666666666e-05, 'epoch': 0.87}
{'loss': 0.7884, 'learning_rate': 4.062499999999999e-05, 'epoch': 0.9}
{'loss': 0.8031, 'learning_rate': 3.020833333333333e-05, 'epoch': 0.93}
{'loss': 0.8085, 'learning_rate': 1.9791666666666665e-05, 'epoch': 0.95}
{'loss': 0.8, 'learning_rate': 9.375e-06, 'epoch': 0.98}
{'train_runtime': 12615.0261, 'train_samples_per_second': 3.944, 'train_steps_per_second': 0.031, 'train_loss': 0.9600355195015976, 'epoch': 1.0}
If there's a warning about missing keys above, please disregard :)
|