Cheng Jed
first model
05b6e1e
|
raw
history blame
2.18 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-large-v2-zh-hk-2gpu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 zh-HK
          type: mozilla-foundation/common_voice_11_0
          config: None
          split: None
          args: zh-HK
        metrics:
          - name: Wer
            type: wer
            value: 0.45734639358860196

whisper-large-v2-zh-hk-2gpu

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 zh-HK dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2237
  • Wer: 0.4573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1544 1.14 1000 0.2260 0.5485
0.0745 2.28 2000 0.2132 0.4967
0.0213 3.42 3000 0.2114 0.4718
0.0117 4.57 4000 0.2196 0.4643
0.0014 5.71 5000 0.2237 0.4573

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2